
Electronic Structure

Reading: A/M 1-3,8-10
G/S 7,11
Hoffmann  p. 1-20

• Drude theory

• Free electron gas

• Nearly free electron model

• Tight-binding model

• Semiconductors
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DC ELECTRICAL CONDUCTIVITY

( ) = σ ( ) J r E r
A constant electric field E results in an electrical current per unit area J:

where the proportionality constant σ is the electrical conductivity

J (current density): A cm-2

E (field):                  V cm-1

σ (conductivity):      A V-1 cm-1 (or Ω-1 cm-1)

if the conductivity is a constant (field-independent), we have Ohm’s Law

large σ = conductor (metal)
moderate σ = semiconductor
small σ = insulator

1 ρ =  
σ

the inverse of the conductivity is the resistivity, ρ

=  V IR 
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I

L

A

ρE J
ρI/AE

I = current
A = x-sectional area of wire
L = length of wire

V = ELvoltage drop:

V/L ρI/A  R ρL/A 

RESISTIVITY FORMULA

 = σ  J E

ρ is a material property, independent of geometry,
with units of ohm∙cm
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classical (Newtonian) theory of electrical conductivity in metals

DRUDE MODEL (1900)

Kinetic theory of gases applied to electrons in a metal. Metal treated as a “gas” of 
mobile valence electrons moving against a background of immobile ions. 
Conductivity is determined by electrons colliding with “scatterers”. Assumptions:

1. no electron-electron forces (independent electron approximation)
2. between collisions, no electron-ion forces (free electron approx.)
3. collisions are instantaneous, leading to abrupt changes in e- velocity
4. collisions randomize the e- velocity to a thermal distribution
5. there is a mean time between collisions of τ (collision time)

dtP



Probability of an electron 
undergoing a collision during
time interval dt



If n electrons per unit volume move with velocity v across an area A in time 
dt, the charge crossing this area in time dt is  

ne J v
ne Adt v

This is the net current density (the net drift current)

2

ne  =   ;ne
m
 

 
 
 

J = - v = E E

Let’s find an expression for the average electron velocity (the drift velocity). 
Without a field, < v > = 0. But with a field E,  

= t = Ft/m = -e t/mv a E

average time between collisions is τ, so: drift = -e /mv E

2ne
m
 = 
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CARRIER MOBILITY
The proportionality constant between the absolute drift velocity and the 
electric field is called the electron mobility, μ:  

drift
e| | = ;
m
  

 
 

v E = E   e  ;
m
 

Note: τ is the collision time, not the electron lifetime!

ne = 
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2

m
ne
 = predicted collision time: 10-15 – 10-14 sec    

predicted mean free path: 0l v  1 – 10 Å

average electronic speed: ~105 m/s from equipartition theory 

PREDICTIONS OF DRUDE THEORY

but experimental mean free paths can be 103 – 108 Å   
→ electrons do not simply bounce off the ions!

1. DC and AC conductivity of metals
2. Hall effect (magnitude, but not sign)
3. Wiedemann-Franz Law  (                     )
4. thermal conductivity due to electrons near room temperature

Drude model provides good explanations of:

but, since it uses classical statistical mechanics (Maxwell-Boltzmann), 
it gets most other quantities wrong (heat capacity, thermopower, etc.).

/ LT  



the simplest quantum mechanical theory of electrons in metals

SOMMERFELD THEORY

Applies Pauli Exclusion Principle to kinetic gas theory. Ignores all forces except 
the confining surfaces of the solid, treating electrons as free & indy particles in a box.

1. only electrons with certain wave vectors (energies) are allowed 
2. quantum statistical mechanics (Fermi-Dirac distribution) 

→ the Pauli exclusion principle must be obeyed (one e- per state)

The quantum mechanical (QM) treatment has two major effects:

The allowed energy levels for an electron in a 3D box of volume V are 
found by solving the (time-independent) Schrödinger equation

H E 

2 2 2 2 2 2
2

2 2 22 2 2
pH
m m x y z m

   
           

 

where the Hamiltonian, 
(the energy operator) is:



2
2

2
E

m
   


the Schrödinger equation becomes:

the general solution is a plane wave: k
1( ) ie
V

  k rr �

with energy:
2 2 2

21( )
2 2 2

p kE mv
m m

  k 

electrons in the metal behave as plane waves of wave vector k

;mp = v = k   
2k 




we next see that the boundary conditions restrict k to discrete values 

ܓ݅ · ܚ



we apply Born-von Karman (periodic) boundary conditions to keep 
the electrons in the metal. For a cubic crystal of edge length L,

we require that the electrons stay in the crystal, and this 
places a constraint on the allowed values of k

( , , ) ( , , )x y z L x y z  
( , , ) ( , , )x y L z x y z  
( , , ) ( , , )x L y z x y z  

L

this condition is met only when: 1yx zik Lik L ik Le e e  

in other words:
22 2;   ;   yx z

x y z

nn nk k k
L L L

 
  

where nx, ny, nz are integers    523
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DENSITY OF k-SPACE POINTS in 2D

each electron level occupies 
an area in k-space of:

22
L
 

 
 

the number of levels in a large 
area of k-space Ω is:

2 2 2

total area
area per k-point (4 / ) 4

A
L 

 
 

the density of k-space 
points per unit area is:

24
A




the allowed wave vectors are those whose Cartesian 
coordinates in k-space are integral multiples of 2π/L

each electron level occupies a 
volume in k-space of:

32
L
 

 
 

the number of levels in a large 
volume of k-space Ω is:

3 3 3(8 / ) 8
V

L 
 



the k-space density of levels is:

38
V
 525

3D CASE



Assume that we have N electrons in our solid. To build up the 
ground state of the solid (0 K), we add the electrons one by one 
into the allowed levels according to the Pauli exclusion principle:

2 2

( )
2

kE
m

k 

• each allowed wave vector (level) has two electronic states, 
spin up and spin down

since energy is quadratic in wave vector:

the lowest energy level corresponds to k = 0 (2 electrons)
the next lowest is |k| = 2π/L  (6 levels, 12 electrons total), etc.

when N is enormous, the occupied region of k-space will look like a 
sphere (the Fermi sphere). The radius of this sphere is labeled kF: 

34
3F Fk volume of the Fermi sphere:
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at 0 Kelvin, the ground state of the   
N-electron system is formed by 
occupying all single-particle levels with 
k less than kF

kF

3
3

3 2

4
3 8 6

F
F

kVk V
 

     
  

the number of allowed values of k is:

the total number of electrons is twice this:
3

23
FkN V




the free electron density n is then:
3

2  
3

FkNn
V 

 
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FERMI SPHERE

• bounded by Fermi surface

• radius is Fermi wave vector

• Fermi energy:

• Fermi momentum:

• Fermi velocity:

• Fermi temperature: 

F Fp k 

2 2 / 2F FE k m 

/F Fv k m 

The surface of the Fermi sphere separates occupied and 
unoccupied states in k-space.

kF

 1/32 3Fk n

zero energy

Fermi energy /F F BT E k
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in terms of the free electron density, the 
energy of the most energetic electrons is:

2 2 2/3(3 )
2F

nE
m





2 2
2

3
0

 2 (4 )
8 2

Fk

tot
V kE k dk

m



       

   




the total energy of the ground-state electron gas is found by adding up 
the energies of all the levels within the Fermi sphere.

spin volume of 
shell of 
width dk

it’s easiest to integrate over concentric shells:

density of 
levels

energy of 
levels in 
this shell

2 52
4

2 2
0

 
2 10

Fk
F

tot
k VVE k dk

m m 
 


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2 23 3 
10 5

tot F
F

E k E
N m

 
we can find the average 

energy per electron:

2

3

3

F

NV
k


by substituting for the volume in terms of N:                   ,

we can also write this result as:

The average electron energy at 0 K is 60% of the Fermi energy. 

3 
5

tot
B F

E k T
N



Typically, TF ≈ 5 x 104 K, while the energy per electron in a 
classical electron gas (1.5kBT) vanishes (= zero) at 0 K.

531
a classical gas achieves this E/N only at T = (2/5)TF



the electron gas exerts a quantum mechanical pressure (called the 
degeneracy pressure) that keeps the free electron gas from collapsing 
at 0 K:

 tot

N

EP
V

    
2 5 2 2 5/3

2/3
2 2

(3 ) 
10 10

F
tot

k V NE V
m m


 

 
 

2 2 5/3
5/3

2

2 (3 ) 2 
3 10 3

totENP V
m V




 


QUANTUM DEGENERACY PRESSURE

The degeneracy pressure is a consequence of the Pauli principle.
White dwarfs and neutron stars are stabilized by this pressure.



3D DENSITY OF STATES
the density of states g(E) is the number of one-electron states 
(including spin multiplicity) per unit energy and volume

3
1 ( ) D

dNg E
V dE



3
3

42
3 8

VN k


  

N = 2 × Fermi sphere volume × # levels per unit volume

 3/2*
2 3 2

3
VN m E





3/2*
1/2

3 2 2

1 1 2 ( )
2D

dN mg E E
V dE 

 
   

 

g(E)
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EFFECT OF REDUCED DIMENSIONALITY ON DOS

2

*( )
z

mg E
L




*
1/22

( ) e

x y

m
g E E

L L


 ( )g E discrete

2D sheet – quantum well

1D quantum wire

0D quantum dot
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Quantum Confinement and Dimensionality
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FERMI-DIRAC DISTRIBUTION FUNCTION

( )/
1( , )

1k Bk E k Tf E T
e 



At absolute zero the occupancy of states is 1 for E ≤ EF and 0 for E > EF. 
At finite temperatures, some electrons near EF have enough thermal 
energy to be excited to empty states above EF, with the occupancy 
f(Ek,T) given by the Fermi-Dirac distribution function.  

Fermi function: 

• consequence of Pauli exclusion principle
• plays central role in solid state physics
• μ is the chemical potential (μ = EF @ 0 K)
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( )/

1( )
1F BE E k Tf E

e 


* f = 0.5 at E = EF



STATISTICAL DISTRIBUTION FUNCTIONS

1( )
exp[( ) / ] 1FD

B

f E
E k T


 

1( )
exp[( ) / ] 1BE

B

f E
E k T


 

Fermi-Dirac distribution: 

Boltzmann distribution: 

• for independent, identical Fermions 
(particles of half-integer spin) 

Bose-Einstein distribution: 

• for independent, identical Bosons 
(particles of integer spin) 

0 < f(E) < 1

0 < f(E) < N 

• for independent, distinguishable 
classical particles (high T, low density, 
so quantum effects negligible)

1( )
exp[( ) / ]B

B

f E
E k T




0 < f(E) < N 
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Fermi function f(E) vs. energy , with EF = 0.55 eV and 
for various temperatures in the range 50K ≤ T ≤ 375K.
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( )/

1( )
1F BE E k Tf E

e 


For E–EF >> kT , f(E) reduces to the classical Boltzmann function: 

( )/ /
( )/ ( )/

1 1( )
1

F B B

F B F B

E E k T E k T
E E k T E E k Tf E e e

e e
  

    


The “Boltzmann tail”
of the distribution
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f(E) for METALS

At normal temperatures, kT is small compared with EF. Since only those 
electrons within ~kT of EF can be thermally promoted or participate in 
electrical conduction, most of the electrons are “frozen out”.
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f(E) for SEMICONDUCTORS

www.hyperphysics.edu
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CARRIER DENSITY in SEMICONDUCTORS

( ) ( )n f E g E dE




 



IMPORTANCE OF g(E) and f(E)

f(E)g(E) product for 
a bulk semiconductor, 
showing the “pools” 
of free electrons and 
holes at the band 
edges

electrons
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NEARLY-FREE ELECTRON MODEL
Starts from the free electron perspective (V = 0) and adds a very weak 
periodic potential to represent the ions. Electrons still independent. 

• since the potential is very weak, we can use perturbation theory to 
calculate how the free electron wavefunction and energies are changed. 

• most useful for s- and p-block metals (e.g., alkali metals)

( ) ( ) iu e  k r
k kr r

( ) ( )u u k kr r R

Bloch’s Theorem: The wavefunction of an electron in a periodic potential 
can be written as a plane wave times a function with the periodicity of 
the Bravais lattice.

main result: The periodic potential deforms the parabolic E(k) of free 
electrons only near the edge of the Brillouin zone; this results in an 
energy gap at the Brillouin zone boundary (i.e., when k ≈ 2π/a).

with:



ELECTRONIC STRUCTURE METHODS
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TIGHT-BINDING MODEL
Molecular orbital (“chemical”) approach to the electronic structure of 
infinite 3D solids. 

• starts from basis of linear combinations of atomic orbitals (LCAOs), 
and considers interactions between atomic sites as perturbations

• opposite simplification of the free electron models

• particularly useful for insulators, d bands of transition metals, 
polymers, some semiconductors, and other “tightly-bound” systems

coefficient atomic orbital

550

 ( ) ( )n n
n

c r r



Molecular Orbital Theory
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Diatomic Molecules
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From MOs to Band Theory
MO diagram for H2.

Ha Hb

En
er

gy

H2

HOMO

LUMO



From MOs to Band Theory
Look at what happens when we move from two hydrogens to four 
hydrogens in a chain.

H4

HOMO

LUMO

En
er

gy

H2

HOMO

LUMO

Ha Hb Hc Hd

߶ୟ ߶ୠ ߶ୡ ߶ୢ



From MOs to Band Theory
Eight hydrogens gives eight MOs and an even smaller HOMO-LUMO 
gap.

En
er

gy

H2

HOMO

LUMO

H4

HOMO

LUMO

H8

HOMO

LUMO



MO Theory for Solids – Qualitative Expectations

Interaction of two atoms:

Interaction of many atoms:

N atomic orbitals give N molecular orbitals.

when N is enormous, the MOs form bands (ΔE << kT) 

band
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bands form only when there is sufficient spatial overlap between atomic 
orbitals to form delocalized states … depends on interatomic distance  

Sodium metal

1s22s22p63s1

greater orbital overlap → wider bands
at high enough pressures, many solids become metallic

localized atomic (core) states

valence electrons 
delocalized 
over entire 
crystal
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Orbital overlaps for sodium:

r  plots
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• the band structure
• whether the valence band is full or only partly full
• the magnitude of any energy gap between full and empty bands

The differences between metals, semimetals, semiconductors, and 
insulators depend on:

filled valence band, empty conduction band → semiconductor/insulator
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Minimization with respect to coefficients c1 and c2 gives a system of 
two simultaneous equations

565

Use quotient rule!
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Overlap Integral S: proportional to degree of spatial overlap between 
two orbitals. It is the product of wave functions centered on different 
lattice sites. Varies from 0 (no overlap) to 1 (perfect overlap).

Coulomb Integral α: It is the kinetic and potential energy of an electron 
in an atomic orbital experiencing interactions with all the other electrons 
and all the positive nuclei

Resonance Integral β12: Gives the energy of an electron in the region 
of space where orbitals 1 and 2 overlap. The value is finite for orbitals 
on adjacent atoms, and often assumed to be zero otherwise.  
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 ( ) ( ) iu e  kx
k kx x

EFFECT of PERIODIC POTENTIAL - BLOCH 
WAVEFUNCTIONS

 ( ) ( ) iu e  k r
k kr r

( ) ( )u u k kr r R

Bloch’s Theorem: The wavefunction of an electron in a periodic potential 
can be written as a plane wave times a function with the periodicity of 
the Bravais lattice.

with:
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For a 1D solid with lattice constant a and n = atom index:



inka
k n

n
e 

range of unique k

n = 0            1           2            3            4           5            6           n

0 1i nae 

( 1)i n ne    576
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“Band structure”
large number of MOs
form band of states
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WIDTH OF THE BANDS

-13.6 eV

Note: as always, the bonding 
orbitals are less stabilized than the 
antibonding orbitals are destabilized

a consequence of overlap: e.g., for a dimer, / 
1 S

E  
 




 580



Crystal Schrodinger Equation: )()()( kkEkH  
ˆ

( )
H

E k
 

 

 


 

1  if  

0  if  
m n

m n

m n

m n

 

 

   

   

( )

,

i n m ka
m n

m n
e N        

0

N
inka

k n
n

e 



CALCULATION OF 1-D BAND STRUCTURE

Electronic energies:

N atoms

for normalized atomic orbitals
and ignoring overlap integrals:

*ˆ ˆH H d       
Dirac bra-ket notation:
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Ĥ  

1. for on‐site (m = n):

2. for resonance (m  n), consider only the nearest neighbors (2)

ˆ ˆ( ) ( ) n n
n

k H k H N         

( 1)
1

ˆinka i n ka ika
n ne H e e    

  

ˆ( ) ( ) ( )( )
( ) ( )

        2 cos

ika ikak H k N N e eE k
k k N

ka

   
 

 

   
 

 

 

inka
k n

n
e 

n‐1        n  n+1

582



 ( 1) ( 1)
1 1

ˆ( )  

         2 cos

ikna ik n a ikna ik n a
n n n nE k e H e e e

ka

   

 

  
     

 

Bandwidth in 1D is 4β (this result ignores overlap (S integrals))

n‐1        n  n+1

 4W Zin Z dimensions:
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 2

 2

SLOPE OF THE BANDS – DENSITY OF STATES

584



Example: Krogman’s salt

the DOS counts levels – the integral of the DOS up to EF is the total 
number of occupied MOs 585



SLOPE OF THE BANDS – CARRIER VELOCITY

the mean velocity of an electron described by energy E and wave vector k is

1( ) E     
v k

k

zero velocity

highest velocity • General result. Electrons move forever 
with constant velocity (in ideal crystals). 

• Zero velocity for electrons in isolated 
atomic levels (zero bandwidth)

• less overlap → lower tunneling probability
→ lower velocity
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CURVATURE OF THE BANDS – CARRIER MASS

the effective mass of a charge carrier near a band minimum or maximum is 
inversely proportional to the curvature of the band:

2

* 2 2

1 1 E
m

      k

positive effective mass

2 2

0 *( )
2

kE k E
m

 


2 2

2 *

E
k m







negative
effective mass!  → hole! Parabolic approximation near 

minimum/maximum:
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Similarly:

ka
ee

Hee

Hee

Hee

basisatomkE

aikaik

nnnn
anikaikn

nnnn
aiknaikn

nnnn
anikaikn

2cos222
22

)(ˆ)(

)(ˆ)(

)(ˆ)(

)2)((

22

3222122
2)1(2

122122
22

1222122
2)1(2

2
































E2

E1

2 4 

2

2 4 

doubling the unit cell size 
doubles the energy per unit 
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PEIERLS (pay-earls) DISTORTION

This is the solid state analogue of the Jahn-Teller effect.
- symmetry breaking lifts a degeneracy

such a system can lower its energy by distorting so as 
to remove an electronic degeneracy.

“1D equally spaced chains with one electron per ion are 
unstable”
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JAHN-TELLER EFFECT

e.g. tetragonal distortion lowers the energy of a d9 complex

octahedral tetragonal

a non‐linear molecule with unequally‐occupied degenerate orbitals will 
undergo a  symmetry‐lowering deformation that breaks the degeneracy, 
stabilizing the system.
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PEIERLS DISTORTION OF H ATOM CHAIN

EF

EF
symmetric pairing distortion opens 
a band gap at the Fermi level.

607



distortion stabilizes the system
- effect is largest for ½ filled band
- band gap forms
- H2 molecules more stable than H chain  

→ charge density waves



‘

‘

‘

‘

609



Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa
Nobel Prize in Chemistry 2000, organic semiconductors

Reduction with alkali metal (n‐doping): 
[CH]n + x Na ‐‐> [CH]nx‐ + x Na+

Oxidation with halogen (p‐doping): 
[CH]n + 3x/2 I2 ‐‐> [CH]n x+ + x I3‐

POLYACETYLENE

another 1D Peierls distortion → localization of pi electrons

pure PA = insulator doped PA = conductor

2D and 3D Peierls distortions also occur, sometimes forming band gaps
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2D BAND STRUCTURE
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How to calculate E(k)?

Crystal Schrodinger Equation: )()()( kkEkH  

ˆ
( )

H
E k

 

 
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)cos(cos2)( akakkE yx  
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

 4

 4

)0,0(
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)cos(cos2)( akakkE yx  

ZW 4
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

 4

 4

)cos(cos2)( akakkE yx  

DOS

E
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a

b

0
0

a

b

a b



 






consider the px orbitals. For a square lattice: 

EFFECT OF LATTICE SPACING

a4

b4

 X        M

E

YY

bkakkE ybxa cos2cos2)(  
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a

b

• X, Y not equivalent k-points
• less overlap in y-direction 
than for square lattice 

For rectangular lattice with increased lattice constant in 
the y-direction, βb is smaller than before:  

a4

b4

 X        M

E

YY

bkakkE ybxa cos2cos2)(  
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bkakkE ybxa cos2cos2)(  

 X        M

E

YY

a4

• X, Y not equivalent k-points
• no overlap in y-direction,
so identical to 1D band
structure!  

a

b

For rectangular lattice with very large lattice constant in 
y-direction, βb is almost zero:  
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Brillouin Zone of Diamond and 
Zincblende Structure (FCC Lattice)

• Notation:
– Zone Edge or 
surface : Roman 
alphabet

– Interior of Zone: 
Greek alphabet

– Center of Zone or 
origin: 

3D BAND STRUCTURE

Notation:

<=>[100] 
direction

X<=>BZ edge 
along [100] 
direction

<=>[111] 
direction

L<=>BZ edge 
along [111] 
direction620
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Electronic Band Structure of Si

<111> <100> <110>

Eg
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