Electronic Structure
* Drude theory
* Free electron gas
* Nearly free electron model
» Tight-binding model
« Semiconductors
Reading: A/M 1-3,8-10

G/S 7,11
Hoffmann p. 1-20

513



DC ELECTRICAL CONDUCTIVITY

A constant electric field E results in an electrical current per unit area J:
J(r)=cE(r)

where the proportionality constant o is the electrical conductivity

J (current density): A cm-2
E (field): Vcm't
o (conductivity): A V1icm? (or 21 cmt)

if the conductivity is a constant (field-independent), we have Ohm's Law

large o = conductor (metal) V =1IR
moderate o = semiconductor
small o = insulator

the inverse of the conductivity is the resistivity, p

1

p: -
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RESISTIVITY FORMULA

L
——————— >
\
A(: [ — )
1
I = current J = oE
A = x-sectional area of wire
L = length of wire E=pJ

E =pl/A
voltage drop: V =EL

V/IL=pVA | R =pL/A

p is a material property, independent of geometry,
with units of ohm-cm
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Resistivities of Real Materials

Compound Resistivity ((2-cm) Compound Resistivity (£2-cm)

Ca 3.9 x10° Si ~ 0.1

Ti 42 x 10°° Ge ~ 0.05

Mn 185 x 10°° ReO; 36 x 10°°
Zn 59 x 10° Fes0, 52 x 10°°
Cu 1.7 x 10°° TiO; 9 x 10*
Ag 1.6 x 10°° ZrO, 1 x 10°
Pb 21 x 10°°® Al,O3 1 x 10*°

Most semiconductors in their pure form are not good
conductors, they need to be doped to become conducting.

Mot all so called “ionic” materials like oxides are insulators.
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DRUDE MODEL (1900)

classical (Newtonian) theory of electrical conductivity in metals

Kinetic theory of gases applied to electrons in a metal. Metal treated as a “gas” of
mobile valence electrons moving against a background of immobile ions.
Conductivity is determined by electrons colliding with “scatterers”. Assumptions:

oL~

no electron-electron forces (independent electron approximation)
between collisions, no electron-ion forces (free electron approx.)
collisions are instantaneous, leading to abrupt changes in e- velocity
collisions randomize the e~ velocity to a thermal distribution

there is a mean time between collisions of T (collision time)

— — | undergoing a collision during

dt | Probability of an electron

7 | time interval dt




If n electrons per unit volume move with velocity v across an area A in time

dt, the charge crossing this area in time df 1s —nevAdt

J = —nev

This 1s the net current density (the net drift current)

Let’s find an expression for the average electron velocity (the drift velocity).
Without a field, < v >= 0. But with a field E,

v =at = Ft/m = -eEt/m

average time between collisions 1s T, s0: 'V 4.0 = -eE7/m

-

J =-nev =

\

2
ne v

m

E=0E ;

0:

2
ne v

m

~
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CARRIER MOBILITY

The proportionality constant between the absolute drift velocity and the
electric field is called the electron mobility, u:

4 )

cT

Voir| = | — |[E=pE ; u=— 1 o=neu
m m

1\ J

Note: 7 1s the collision time, not the electron lifetime!

TABLE 7.1 Parameters of Some Metals at T = 295 K

Mass Electron Collision

Atomic Density Density Conductivity Time

Number Valence P n o T
Metal A z (10° kg/m®)  (10® m™3)  [10°(R-m)~'] 107V s)
Ag 107.9 1 10.5 0.585 62.1 37.6
Al 26.98 3 2.70 1.81 36.5 T:17
Ba 137.3 2 3.59 0.315 2.6 293
Be 9.012 2 1.82 2.43 30.8 4.50
Ca 40.08 2 1.53 0.460 27.8 21.5
Cd 112.4 2 8.65 0.927 13.8 5.29
Cs 132.3 1 2.00 0.091 5.0 19.5
Cu 63.55 1 8.93 0.846 58.8 24.7
In 114.8 3 7.29 1.15 11.4 3.53
K 39.10 1 0.91 0.140 13.9 35.2
Li 6.939 1 0.54 0.469 10.7 8.11
Mg 24.31 2 1.74 0.862 22.3 9.18
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PREDICTIONS OF DRUDE THEORY

predicted collision time: 7= —— » 10°15 — 1014 sec

predicted mean free path: [ = VT » 1-10A

!

average electronic speed: ~10° m/s from equipartition theory

but experimental mean free paths can be 10° — 108 A
— electrons do not simply bounce off the ions!

Drude model provides good explanations of:

1. DC and AC conductivity of metals

2. Hall effect (magnitude, but not sign)

3. Wiedemann-FranzLaw (x/o=LT)

4. thermal conductivity due to electrons near room temperature
but, since 1t uses classical statistical mechanics (Maxwell-Boltzmann),

it gets most other quantities wrong (heat capacity, thermopower, etc.).



SOMMERFELD THEORY

the simplest quantum mechanical theory of electrons in metals

Applies Pauli Exclusion Principle to kinetic gas theory. Ignores all forces except
the confining surfaces of the solid, treating electrons as free & indy particles in a box.

The quantum mechanical (QM) treatment has two major effects:

1. only electrons with certain wave vectors (energies) are allowed
2. quantum statistical mechanics (Fermi-Dirac distribution)
— the Pauli exclusion principle must be obeyed (one e~ per state)

The allowed energy levels for an electron in a 3D box of volume V are
found by solving the (time-independent) Schrédinger equation

Hy = Ey

where the Hamiltonian,
(the energy operator) is:

2 2 2 2 2 2
H:p_:_h 82_|_62_|_a_2 :_h_vz
2m 2m\ Ox° 0Oy° Oz 2m




h2
the Schrodinger equation becomes: ——Vzw = Ey
2m

. . iK-r
the general solution is a plane wave:

W, (r) :%e

2 27172
with energy: E(k) — lmvz — P — ﬂ
2 2m  2m

electrons in the metal behave as plane waves of wave vector k

27
=mv=hk ; k=——
P A

we next see that the boundary conditions restrict k to discrete values




we require that the electrons stay in the crystal, and this
places a constraint on the allowed values of k

we apply Born-von Karman (periodic) boundary conditions to keep
the electrons in the metal. For a cubic crystal of edge length L,

———
——————————————
————
—— -~
- ~
’f \\
»” S

w(x+L,y,2)=y(x,,2)
y(x,y+L,2)=y(x,y,z) OO0

v(x,y,z+L)=y(x,y,2)

0 L
' kL /
this condition is met only when: elka — el Y= elkZL — ]
2rn 2rn 2 Th
in other words: kx = X . ko= Yoo ko= zn,

r > L7 L

where n,, n, n, are integers ..



DENSITY OF k-SPACE POINTS in 2D

Figure 2.2
i-‘-:-l"'s. m a two-dimensional h-space of the form k, =

miny/L, ky = 2un /L. Note that the area per poitit is just
,-r.-.LJ In -:Iunrzﬂsn::- ns the volume per peint is (2n/L)

.l.:.lliI

each electron level occupies

an area in k-space of: - - f:eT
2
L
the number of levels in a large the density of k-space
area of k-space (2 is: points per unit area is:
total area Q Q4 A

area per k-point (472 /1?) 4r? Ar?
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3D CASE

the allowed wave vectors are those whose Cartesian
coordinates in k-space are integral multiples of 2m/L

KZ
A

each electron level occupies a
volume in k-space of:

3
2
L
the number of levels in a large
volume of k-space (2 is:

Q Qv

= B

- e

g 7 % /

e P 2 P
] P
P A —— -
7 P ! //
e

v

o (87° /L) 87

the k-space density of levels is:

7
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Assume that we have N electrons in our solid. To build up the
ground state of the solid (O K), we add the electrons one by one
into the allowed levels according to the Pauli exclusion principle:

* each allowed wave vector (level) has two electronic states,
spin up and spin down

n’k’
since energy is quadratic in wave vector: [ (k) -
2m

the lowest energy level corresponds to k= O (2 electrons)
the next lowest is |k| = 2n/L (6 levels, 12 electrons total), etc.

when N is enormous, the occupied region of k-space will look like a
sphere (the Fermi sphere). The radius of this sphere is labeled kg:

4

volume of the Fermi sphere: () = —72'/(;

3
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at O Kelvin, the ground state of the
N-electron system is formed by
occupying all single-particle levels with
k less than k-

3
the number of allowed values of k is: (ﬂ ﬂkéj(Lj — kF V

3 81 6
k3
the total number of electrons is twice this: [N = F2 V
3z
3
N _ ki

the free electron density n is then: | 1 = —

V  3r’
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FERMI SPHERE

The surface of the Fermi sphere separates occupied and
unoccupied states in k-space.

* bounded by Fermi surface

k, = (37z2n)1/3

 radius is Fermi wave vector

+ Fermi energy: EF — hzké /2m

* Fermi momentum: Pr = hk o

, . i locity: —
zero energy Fermi velocity: v hkF / m

/
/
/

Fermi energy * Fermi temperature: 7. = F_ / k,



TABLE 7.3 Free-Electron Parameters for Various Metals

kp (M E]: Tp
Metal (10" m~1) (10 m/s) (eV) (10° K)
Ag 1.20 139 5.49 63,7
Al Mo 2.03 1% 7 539
Ba 0.977 LA 3.64 42.2
Be 1.93 2.23 14.2 165
Ca 1.4l 1.28 4.68 4.3
Cd 1.40 1.62 ] 86.6
Cs 0.646 0.748 1.59 18.4
Cu 1.36 1.3 7.03 81.5
In 1.50 1.74 8.63 100
K 0.745 0.863 2:12 24.6
Li 1.12 1.28 4.74 0.0
Mg 1.37 1.58 7.11 82.5
Na 0.922 1.07 3.24 3/.6
Rb 0.698 0.808 1.86 21.3
Sr 1.02 1.18 3.94 45.7
In 1.57 1.82 9.40 109
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2 2 N\2/3
in terms of the free electron density, the h (372' n)
energy of the most energetic electrons is: E F =

2m

the total energy of the ground-state electron gas is found by adding up
the energies of all the levels within the Fermi sphere.

it's easiest to integrate over concentric shells:

kp 212
:jz-(4ﬁk2dk)-( V3j- UL
0 2

87T 2m

A
1
I

spin  volume of !
shell of density of energy of

-->

wina s o

h eV

E =17 j k*dle = ——E
27im 107" m 0



371°N
k.

by substituting for the volume in terms of N: |/ =

2712
we can find the average Etot . 3 7 kF . EE
energy per electron: N 10 m — 5 F

The average electron energy at O K is 60% of the Fermi energy.

E 3
we can also write this result as: ot — _ | T
N 5 °%°

Typically, Te # 5 x 10* K, while the energy per electron in a
classical electron gas (1.5kyT) vanishes (= zero) at O K.

a classical gas achieves this E/N only at T = (2/5)T,
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QUANTUM DEGENERACY PRESSURE

the electron gas exerts a quantum mechanical pressure (called the
degeneracy pressure) that keeps the free electron gas from collapsing

at O K: oE
P — fot
),

WKV R*@Br’N)”

107 m 10727 m
p_2 h2(37222N)5/3 yosnl_ 2 B,
3 10x"m 3V

The degeneracy pressure is a consequence of the Pauli principle.
White dwarfs and neutron stars are stabilized by this pressure.



3D DENSITY OF STATES

the density of states g(E) is the number of one-electron states
(including spin multiplicity) per unit energy and volume

14N
g(E);, =
V dE
N = 2 x Fermi sphere volume x # levels per unit volume
4 4
N=2><—7Z-k3><—3 DOS « VE
3 8 g(E)

N = 37;;_13 (2m'E) "

. \3/2
1 dN 1 [ 2m 12
E), . = = E
8B V dE 27z2£ ]
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EFFECT OF REDUCED DIMENSIONALITY ON DOS

Degrees of freedom Density of states

2D sheet - quantum well 3 = i

1D quantum wire ' & L i

Ppos

@

Th’L,

OD quantum dot

(E) . N 2m: E—1/2 "
ST hl L

Y g(E) =discrete

534



i(kyx+k,y)

3D W =Asink z-e
i(k.x+k y+k,z) s
W — Ae y ;2 7 hz
: ™ Well  E=_ 4o (k] k)
E_2 +k2+k2) om, L., m,
m, *
y = Asink x-sink,y e"
B onon B )
' E= el ———
Wire 8m. é\{ % ,fi;} 2m,
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Quantum Confinement and Dimensionality
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FERMI-DIRAC DISTRIBUTION FUNCTION

At absolute zero the occupancy of states is 1 for E <Erand O for E > E..
At finite temperatures, some electrons near Er have enough thermal
energy to be excited to empty states above Eg, with the occupancy
f(E,,T) given by the Fermi-Dirac distribution function.

1
Fermi function: f(EkaT) = T (E—u)ksT
e T

+1

« consequence of Pauli exclusion principle
* plays central role in solid state physics
* U is the chemical potential (1 = Er @ 0 K)

Energy distribution of electrons
A

T {E)
1 1

) — ~——— T= 0K
f( ) e(E—EF)/kBT_I_l 1 N ok et Ty )

2

*f=0.5atE = E.




STATISTICAL DISTRIBUTION FUNCTIONS

Boltzmann distribution:

« for independent, distinguishable

classical particles (high T, low density,

so quantum effects negligible)

Fermi-Dirac distribution:

* for independent, identical Fermions

(particles of half-integer spin)

Bose-Einstein distribution:

* for independent, identical Bosons
(particles of integer spin)

1
T ) N E - kT
O<f(E)<N
fro(E) = :
P exp[(E - p)  k,T]+1
0<f(E)<1
1
fBE (E) —

exp[(E — u)/ k,T]—1

O<f(E)<N
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Fermi-Dirac Function

The Fermi-Dirac function gives the fraction of allowed states, f(E), at
an energy level E, that are populated at a given temperature.

f(E) = 1/[1 + exp{(E-EF)/kT}]

where the Fermi Energy, Eg, is defined as the energy where f(E) = 1/2.
That is to say one half of the available states are occupied. T is the
Tamp?mfure (in K) and k is the Boltzman constant (k = 8.62 = 103
eV/K

As an example consider f(E) for T = 300 K and a state 0.1 eV above E.:

f(E) = 1/[1 + exp{(0.1 eV)/((300K)(8.62 x 105 eV/K)}]
f(E) = 0.02 = 2%

Consider a band gap of 1 eV.
fleV)=16 =10V

See that for even a moderate band gap (Silicon has a band gap of 1.1
eV) the intrinsic concentration of electrons that can be thermally
excited to move about the crystal is tiny. Thus pure Silicon (if you

could make i1) would be guite insulating. o



Result: | Qcocupation Function

e
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= w
= =
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14 results  Parameters...

Simulation = #1

Al F Temperature(K) = 50K

Fermi function f(E) vs. energy , with E. = 0.55 eV and
for various temperatures in the range 50K < T < 375K.
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|
J(E)= S E—Ep) ks

+1

For E-E- > kT, f(E) reduces to the classical Boltzmann function:

1 1

_ - _ ~(E—Ep)lkyT _ ~AE/k,T
J(E) o EEr)/kgT 1~ (E-Ep)/ksT € €

100%

8%

60%

400

Probability

N
20% |

. The "Boltzmann tail"
" | . ; of the distribution

\ .
-0.2 -0.1 0 - 0.1 4z
N P

Energy (V)™ =+ =




Metals, Semiconductors & Insulators
™ ™ | Conduction

} Band
&
= > Er
L
Valence
P:
DOS DOS DOS
Metal Semimetal Semiconductor
/Insulator

In a metal the Fermi level cuts through a band to produce a partially filled
band. Ina semiconductor/insulator there is an energy gap between the filled
bands and the empty bands. The distinction between a semiconductor and an

insulator is artificial, but as the gap becomes large the material usually
becomes a poor conductor of electricity. A semimetal results when the band
gap goes To zero.



4

ﬁ T =
'—rh T|

f1E]

1

f(E) for a

semiconductor

Fermi Dirac Function
Metals and Semiconductors

Signal

Valence
band

L

NG

1K
-

| B = L L
-2 0 +10.I

Crap

|
i

Energy above Fermn bevel 12Y)

-
'l'-..._

-

f(E) as determined
experimentally for
Ru metal {note the
energy scale)

Conduction
band

Er
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f( E ) fO r M E TAL S Electron energy levels

E fill up to Fermi level
atT =0K

l Er =7 eV for copper

/ kT = 0.026 eV at 300K
The energies available ==
from ordinary thermal ek = 0.000004 eV for

or electrical processes | 100 volts on 1m wire.

are a very tiny fraction
of the Farmi enargy.

Er

2 32 r
By ;m JE

Since all available energy
levels are filled, glectrons
down in the distribution
cannot interact with
anything unless is is = i .
capable of raising them P(E) = electron denﬁ,lty, of states
all the way to the Fermi
level, A

1.0
-

(A& ~kgT)

=" p(E)=

A\

Yoo

At normal temperatures, kT is small compared with Er. Since only those
electrons within ~kT of Er can be thermally promoted or participate in
electrical conduction, most of the electrons are "frozen out”. 544



f(E) for SEMICONDUCTORS

Conduction
Band
E
gap Al absolute
Fermi zero, OK Egap
Level 2
f(E)
Valence Band a_::

Contaxt of Fermi level
for a semiconductor

Mo electrons can be above the valence
band at 0K, since none have energy

above the Fermi level and there are

no available energy states in the band

gap.

Conduction Conduction
Band Band
- Some elactrons have High
anargy above the Farmi

laval. 9 Temperature

___;___
o

m
S

Valence Band |—= Valence Band | —=

At high temperatures, some electrons
can reach the conduction band and
contribute to electric currant.

www.hyperphysics.edu
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CARRIER DENSITY in SEMICONDUCTORS

Frobability of

slale

Conduction
Band

Egap_

n=| f(E)g(E)E

Number of — Actual population
occupation of X available energy —  of conduction band.

slales

The surm of all

: these electrons
{ gives the
£ population of
© the conduction

bend:
N,

L
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IMPORTANCE OF g(E) and f(E)

U= [ Ef(E)g(E)dE
n_ff g(E) dE
C——fE-f (E)g(E) dE

ddeEf (E)g(E)v(E)A(E) dE

Probability of occupancy
0 0.5 1

electrons _ |
\} f(E)g(E) product for
E 1 . a bulk semiconductor,
B | ' showing the "pools”
E ’ © ® of free electrons and

N L oV holes at the band
hol
oles 2 edges

0.0E+00 1.OE+26 2. 0E+26 3 0E+L6
Density (1/'cm3eV) 547



NEARLY-FREE ELECTRON MODEL

Starts from the free electron perspective (V = 0) and adds a very weak
periodic potential to represent the ions. Electrons still independent.

« since the potential is very weak, we can use perturbation theory to
calculate how the free electron wavefunction and energies are changed.

Bloch’s Theorem: The wavefunction of an electron in a periodic potential
can be written as a plane wave times a function with the periodicity of
the Bravais lattice.

v, (1) =u, (r)e™”

with: % (r) =y (r+R)

main result: The periodic potential deforms the parabolic E(k) of free
electrons only near the edge of the Brillouin zone; this results in an
energy gap at the Brillouin zone boundary (i.e., when k = 2m/a).

» most useful for s- and p-block metals (e.g., alkali metals)
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ELECTRONIC STRUCTURE METHODS
< Tight binding >

Mearly-free electron model

Hartree—Fock
Modern valence bond
seneralized valence bond
Maller—lezset perturbation theory
Configuration interaction
—oupled cluster
Multi-configurational zelf-conszistent field
Density functional theory
Guantum chemistry composite methods
iuantum Monte Carlo
k-p perturbation theory

rLITfin-tin approximation
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TIGHT-BINDING MODEL

Molecular orbital ("chemical”) approach to the electronic structure of
infinite 3D solids.

* starts from basis of linear combinations of atomic orbitals (LCAOs),
and considers interactions between atomic sites as perturbations

« opposite simplification of the free electron models

w(r) =) ¢,

'[N

coefficient atomic orbital

* particularly useful for insulators, d bands of transition metals,
polymers, some semiconductors, and other "tightly-bound” systems
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Molecular Orbital Theory

Antibonding

) Orbital, "
3 - x
I:%u . v . |%;l ‘ N ‘
."l
b s SO Bundmg e
Orbital, o
H atarmie m'h:l.ﬂa. H: ribecular orlutals
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Diatomic Molecules

adious
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From MOs to Band Theory

MO diagram for H.,.

Energy
A
I




From MOs to Band Theory

Look at what happens when we move from two hydrogens to four

hydrogens in a chain.
—~ 30

OQ = LUMO
1 LUMO
. 7 QUO0
G AN
LICJ ¢a ¢b ¢c ¢d )
00 1 ono HOMO
H2 Ha Hb Hc Hd



From MOs to Band Theory

Eight hydrogens gives eight MOs and an even smaller HOMO-LUMO

gap.
oo 500 0°0°0
— 0Q0Q0Q0
LUMO
A N MO 50 — Q0000

Energy
=




MO Theory for Solids — Qualitative Expectations

ENERGY

[

ANTIBONDING

Interaction of two atoms:

AE
atomic orbital * atomic orbital
BONDING
molecular
orbitals
. : E 2 skt = Sy
Interaction of many atoms: ' —_ —— L' pand
. ——
1 2 3 4 N atoms —

N atomic orbitals give N molecular orbitals.

when N is enormous, the MOs form bands (AE <« kT)
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bands form only when there is sufficient spatial overlap between atomic
orbitals to form delocalized states .. depends on interatomic distance

Sodium metal

valence electrons
1522s22pb3s’

T

3s

&
' 2s
localized atomic (core) states
> _ 1s

| !
/

r

over entire
crystal

|

ENERGY

r,
o
Interatomic distance —

greater orbital overlap — wider bands
at high enough pressures, many solids become metallic::



Orbital overlaps for sodium:

q ) Nails?, 25%,2p% 3s'] n

s
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Metals, Semiconductors & Insulators
™ ™ | Conduction

} Band
&
= > Er
L
Valence
P:
DOS DOS DOS
Metal Semimetal Semiconductor
/Insulator

In a metal the Fermi level cuts through a band to produce a partially filled
band. Ina semiconductor/insulator there is an energy gap between the filled
bands and the empty bands. The distinction between a semiconductor and an

insulator is artificial, but as the gap becomes large the material usually
becomes a poor conductor of electricity. A semimetal results when the band
gap goes To zero.



The differences between metals, semimetals, semiconductors, and
insulators depend on:

* the band structure
« whether the valence band is full or only partly full
 the magnitude of any energy gap between full and empty bands

filled valence band, empty conduction band — semiconductor/insulator

Eh

empty

conduction band

valence band

core level
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Orbital Interactions: Key Points

The overlap of two atomic orbitals is dependent upon:
- symmetry of the orbitals

~ distance between the orbitals
~ spatial extent of the orbitals

~ the energy difference between orbitals

 Increasing the overlap (spatial and energetic) leads
to the following:
~ Stabilization of the bonding MO
- Destabilization of the antibonding MO
~ The antibonding MO is destabilized to a greater extent than the
bonding MO is stabilized
The spatial overlap in a bond depends upon symmetry
- It decreases as the number of nodal planes increases, c>mn =5

- rand particularly & bonds are more sensitive to changes in bond
angle
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Elementary Band Theory for Molecules

Schrodinger equation

Solving the Schrédinger equation . —
after applying simplifications tigh} binding approach

Hy = Ey

~

LCAO: linear combination of atomic wavefunctions, the Atomic Orbitals ¢

Y= Ziciq)i

¢ is normalized, thus Jo2dt = 1

with dt = dxdydz

Calculate the expectation value of H:

JyHydt

E =

c;: coefficients
AQO's: basis set

For a minimal E: dE/dc, = 0
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Elementary Band Theory for Molecules

Case studies: 1) the diatomic case
Y= ? Cid; = C104 + C0,

For a minimal E: dE/dc, =0, i.e.
oE/dc, = 0 and dE/dc, = 0

=> two solutions -
fyfilwydt  —» numerator (1)

Jy2dt — denominator ()

E =

JyHwydrt = [(c,04 + c,0,)H(C, 0 + Cy0,)dT

= J(c,20,Hd, + 2¢,C,0,Hb, + c,20,Hd,)dt

. Coulomb-integral

= 012j¢1ﬂ,¢1d1 +2C4C, J¢1H¢2d’t + 2|0, Ho,dT o, <0
v
Coulomb-integral resonance-integral

oy <0 B4, < 0 if bonding
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Case studies: the diatomic case, continued
Y= ZI Ci0; = C104 *+ C,0,

Numerator (I):  JyHydt = ¢20,, + 2¢,C,B4, + C,20,
Denominator (Il): fy2dt = [(c,0, + c,0,)2dT
= J(C1204% + 2€,C,040, + 29,2 )dt

= c,3p,2dq + 20102U¢1¢2d”~' + c4l,%dr
v v

=1 overlap =1
S, 2 0 if bonding

=> [y2dt = ¢,2 + 2¢,C,S;, + C,2

oE/oc, =0

Use quotient rule!

JE Jd c0,+2c,c,B,, + Cl0
= L 2z 272 - n[ﬂ!l}_ﬂ!lﬂ!);g!lﬂ!l
dc, dc;  C2+2c,C,S,, +C2 #l=) {o(=)

Minimization with respect to coefficients c, and c, gives a system of
two simultaneous equations
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Case studies: the diatomic case, continued

(o - E)cq + (P12 - ESqp)c, =0
(B12 - ESyy)c; + (o, - E)c, =0

Secular determinant =0 General rule:
o, -E Bio - ESy, A B

0= 0= =
Bi2-ESiz op-E C D

0=(oy-E)(0y-E)-(By2- ESyy) Bz - ESyy)

Case studies: 1a) the diatomic homoatomic case, e.g. H,
oy =0, =0
0=(a-E)(a-E)-(B-ES)(B-ES)=(a-E)-(B-ES)
=>(a-E)=%(B-ES)
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Case studies: the diatomic homoatomic case, e.g. H,

o-E =% (B-ES): two solutions, A and B

A B
oa-E=-(B-ES) a-E=B-ES
oa+B=E(1+S) o-B=E1-9)
E = (o + B)/(1+S) E = (a-B)(1-S)
C,= 1/\][2(1 +S)]=c, C, = 1N[2(1 -S)] =-c,
Ea B O . Ea B
A OO A
H, "He,"

Calculated without any approximation 567




Overlap Integral S: proportional to degree of spatial overlap between
two orbitals. It is the product of wave functions centered on different
lattice sites. Varies from 0 (no overlap) to 1 (perfect overlap).

Coulomb Integral a: It is the kinetic and potential energy of an electron
in an atomic orbital experiencing interactions with all the other electrons
and all the positive nuclei

Resonance Integral B,,: Gives the energy of an electron in the region
of space where orbitals 1 and 2 overlap. The value is finite for orbitals
on adjacent atoms, and often assumed to be zero otherwise.
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Case studies: more complex molecules

Conjugated molecules, e.g. ethene, C,H,, and butadiene, C,H;

C,H
sl H\ /H VB: sp? for each C atom
/C :C\ Consider only the © bonds:

V= le Cid; = C104 + Cy,

Problem solved by analogy:
E, = (o + B)/(1+S), E, = (a - B)/(1-S)

C4Hs W= 2 Cid; = Cqdq + 0y + C303 + Cyy
Secular determinant =0
a, - E Bi2- ESiz Bi3- ESyz Bys- ESyy

By -ESy a,-E Bos - ESy; Bos - ES,,
B3 -ESzy Bs-ES;; o3-E Bas - ES3y

Bar - ES4r Paz-ESsp Pas-ESys ay-E 569



C,Hg, continued ....
Problem 'solution' by approximation(s):

1. approx.: set §; = 0 unless adjacent atoms — Extended Hiickel
2. approx.: set S; =0 » Simple Hiickel
Hickel determinant: Extended Hiickel determinant:
|Hj-E[=0 |Hi-S;E|=0

H; = o; = [pApdr  Coulomb integral = - ionization potential
H; = -

H, =B, = lpHpdt  resonance integral

H; is proportional to the average of H; and H,

C,Hs, secular determinant in the Simple Hiickel approximation
oa-E B 0 0
B a-E B 0
0 B oa-E B
0 0 B a-E 270




C,Hg, continued ....
0= (- E)*-3(c - E)2p2 + p*

solve in analogy to
ax* + bx2 + ¢ =0, with u = x%.
au’+bu +c=0
=>E=0%1.62p3, E=oa+0.62p3

Ea
— o-1.62p

Simple Hickel
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Simple Hickel

o+ V2B, o

+1.6B, ax06p;CH, ., E=a

Hs: E

+ B; Cgq

= o

C,H, E
5 O

General scheme for 'linear’ polyenes

2B, ...

+
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; ; Simple Huckel
General scheme for 'linear’ polyenes g

C.H..,: n atoms, n & orbitals, j energy levels withj=1,2,3, ..., n
E, = o + 2Bcos(jn)/(n+1)

Examples:
ethene,C,H,, n=2:
E,=a+2Bcosn/3=a+f
E, =a+ 2Bcos(2n)/3=a- B
allyl, C;Hs, n = 3:
E,=o+2Bcosn/d=o+ V2B ...
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EFFECT of PERIODIC POTENTIAL - BLOCH
WAVEFUNCTIONS

lﬂ—n‘ 4 + l ‘ (—— Vi +Wr))¥(r)=ET¥(r)

V(r) - 2m

Bloch’s Theorem: The wavefunction of an electron in a periodic potential
can be written as a plane wave times a function with the periodicity of
the Bravais lattice.

W (X) =u, (X)eikx

ik-r

v, (r) =u,(r)e

/ with: U, (r)=u, (r+R)
/f |
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Elementary Band Theory for Extended Solids
Energy bands in solids arise from overlapping
atomic orbitals => crystal orbitals (that make up the bands)
Recipe: use LCAO (tight binding) approach

Crystal = regular periodic array => translational symmetry

Periodic boundary condition requires: y(x+Na) = y(Xx).

|.e. each wavefunction must be symmetry equivalent to the one in the
neighboring cells.

For a 1D solid with lattice constant a and n = atom index:

Bloch's theorem

‘Pk = Z e A o n (a solution of the Schrédinger equation)
n

Y = Z {(coskna + isinkna)d, }
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Wy = nE {(coskna + isinkna)¢.}

1-dimensional case

Consider k=0: zone center [’

cos(kna) = cos(0) = 1
sin(kna) =sin(0) =0

e

i0na __ 1

V=20, =g+ oyt togt ..

Wk _ Zeinka¢n

-nla <k < 7la

range of unique k

Consider k = /a: zone border X
cos(kna) = cos(nn) = (-1)"
sin(kna) = sin(ztn) =0
WEZ ()0, =00t do- st

eiﬂ'l’l — (_l)n -




Elementary Band Theory for Extended Solids

Example: linear infinite chain of equidistant H atoms

Zone center I Zone border X
WEZ 0, =gt oyt 0+ 05+ ... Y=2(-1)"0,=0g-0q +0p- 03+ ...
-D—D0—D—D— —-2—(O0—2—CO—
all in phase; all out of phase;
all bonding (o) all antibonding (c*)

Plot E as a function of k:

large number of MOs
J “Band structure”

form band of states

-t/a <k < n/a;
E(k) = E(-k)
E(k) = o + 2P cos(ka)

s-shape curve

!
i
) —a

0 w/a
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Other case: s, p and d orbitals in an infinite chain.
Let z be in the chain direction. Then, p, will be analog to p,, and d, to
d,2,2, and d,, tod,,.

Zone center I’ Zone border X

Y=Z 0, = hg+ oyt st ... Y=Z (1) =001+ d2- 03+ ...
all in phase; but ? bonding ? all out of phase; but ? bonding ?
C <©o—o0o—o o000 oo S —0—e—0—e—0—e—0 O

T 0 0 0 0 0 0 0 0 Py Py 0 0 9 0 9 0 9 0O g*

o P, CBEOCBDEOCBDEOBDSD O

C <clociociociociociocioeie d. <cloeleckelecioelecioele ¢
T KKK KK KKK e d, KRR XKHK ™
I ST LAl e

Bonding/antibonding: depends on in phase/out of phase AND orientation




s, p and d orbitals in an infinite chain:
how do the bands run?

antibonding at k = 0: band runs "downhill"

Pz a

g | - - 0
'% g g g E g % % bonding at k = O:

band runs "uphill"
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WIDTH OF THE BANDS

Bandwidth (dispersion) 20+

The difference between highest and g e e e
lowest level of one band. o

The bandwidth is determined by the ~ t _

overlap between the interacting i

orbitals. |

The smaller the distance between the |

atoms, the larger the bandwidth. i
g -13.6ﬁ¥__.—-——-—"—‘_//

=20

Note: as always, the bonding 0 k=20 k—=F0 s~ %,]

orbitals are less stabilized than the ; .

antibonding orbitals are destabilized innDItEChAMOL.Htoms
atp

a consequence of overlap: e.g., for a dimer, E+/_ @
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CALCULATION OF 1-D BAND STRUCTURE
N
N atoms ¥, = Zelnka¢n
n=0

Crystal Schrodinger Equation: Hw(k) — E(k)W(k)

Electronic energies: E(k) =

Dirac bra-ket notation:

<y

Vo

Hy > Ejt//*ﬁwdr

for normalized atomic orbitals
and ignoring overlap integrals:

<¢m¢n>:1 if m=n <W‘W>:Zei(n—m)ka<¢
<@g |¢p,>=01f m#n m,m




Vol

H ',”k _ Zn: einka ¢n

<y W >

1. for on-site (m = n): <w(k)‘[§‘l//(k)>22<¢n ‘ﬁ ¢ >=Na

2. for resonance (m # n), consider only the nearest neighbors (2)

—O 8 9 O C O o )
n-1 n n+1
—inka 7| i(ntl)ka . tika
<e ¢n H € ¢ni1 > = IBe

<w(k)‘]§‘w(k) > Nat NBE +e )

<y (k)|w(k)> N
+a+2pcoska

E(k) =

582



n-1 n n+1

E(k) = <e ™™g

S k(n—1)a kna k(n+1)a
H‘ {e’ ¢ _ +e g +eé ¢n+1} >

=a+2fcoska

Bandwidth in 1D is 43 (this result ignores overlap (S integrals))

in Z dimensions: W — 4Zﬂ
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SLOPE OF THE BANDS — DENSITY OF STATES

Densities of states (DOS)
= number of levels in the energy interval AE

a—-20

—

E (k) DOSIE)

|
il
ry —a

o+ 20

D me 0 pos—

K —

DOS is proportional to the inverse slope of the band,;
steep bands (large overlap) => small DOS

flat bands (small overlap) =>large DOS
DOS(E;) determines properties

e.g., electrical conductivity, magnetic susceptibility, specific heat ...

DOS(E) = 0: always nonmetallic
DOS(Eg) > 0: often metallic 584




Example: Krogman’s salt E feV]

Pt-Pt

Unit cell of K,[Pt(CN),]-3H,0

Pt-CN- <

=16 |-
_— -

the DOS counts levels — the integral of the DOS up to E; is the total
number of occupied MOs 585



SLOPE OF THE BANDS — CARRIER VELOCITY

the mean velocity of an electron described by energy E and wave vector k is

1 \OE
v(k) =
h ) Ok
highe§t velocity  General result. Electrons move forever

with constant velocity (in ideal crystals).

My —a

« Zero velocity for electrons in isolated
atomic levels (zero bandwidth)

--------- zero velocity * less overlap — lower tunneling probability
5 y — lower velocity

K —
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CURVATURE OF THE BANDS — CARRIER MASS

the effective mass of a charge carrier near a band minimum or maximum is
inversely proportional to the curvature of the band:

] 1 \O°E

* 2 2
m h° ) ok
negative
effective mass! — hole!

Parabolic approximation near
minimum/maximum:

E (k) 21.2
E(k)=E,+ 'k

ry —a

*

2m

. 2 2
b, - OE_1
m“’ a k ) - *

m

positive effective mass 587




Elementary Band Theory for Extended Solids

Recipe for the construction of simple band structures
1) determine the valence-orbitals and the number of valence-electrons;

2) determine the relative energies of the valence-orbitals [using MO
theory if necessary];

3) see how they depend on k [e.g., do the bands run uphill or downhill;
are they steep or flat];

4) sketch the band structure (Fermi level!);
5) plot the projection onto the DOS.

Example: Krogman’s salt
K,[Pt(CN),]-3H,0: white insulator, c = 107 Q'em”
K,[Pt(CN),ICl, ;-3H,0: bronze metal, o =10*2 Q"cm-

Comparison of specific conductivities

Semiconductors Si: 6 =10° Qcm-
Ge: =102 Q'ecm™;

Metals Cu: 6 = 10" O"cm-. .




Krogman’s salt: a quasi one-dimensional material

Step 1: valence-orbitals, electron-counting
K,[Pt(CN),]-3H,0: K*, CN-
=> Pt*2, d8
Step 2: relative energies of the valence-orbitals (here: d orbitals)
understanding of the crystal structure required!

Unit cell of K,[Pt(CN),]-3H,0 589



Krogman’s salt: a quasi one-dimensional material
Step 2: continued ....

MO diagram of square planar [Pt(CN),]* (D, symmetry)

/ big

X2 - y2
e
8 ng
7
Xy d1g
to
. XZ, VZ \
M-d in M-d in M-d in
octahedral L tetragonal L square
field field planar L

field

590



Krogman’s salt: a quasi one-dimensional material

Step 2: continued ....

Pt (d°) PiL, L4

The complete MO of PtL,

591



Krogman’s salt: a quasi one-dimensional material

Step 2: continued .... Step 3: determine how the bands run

Relative height of p, vs. d,227? ? Bandwidths ?

X o

312 E
fu J—.z
: : y
z
’ 32y 2 .2 8
x2-y 2 K=y
'J1g

_____ Er (32 v.-e.) 1

¢’ '3
Xz.yz =%;§.= XZ,yz w—
o Xy
—_— s ——
F'tL‘4 PtELB F'tL4
G>T >0

Formation of PtL, pairs 592



Krogman’s salt: a quasi one-dimensional material

Step 3: continued ....

? Uphill or downhill ?
Zone center vs. zone border,

k =w/a

D O & & “% g g %
0 D0 QD QP
o o o ’%%%%

Q02 **

Step 4: sketch the band structure

Pt ) El[EV]

-16 =

593



Krogman’s salt: a quasi one-dimensional material

Step 5: sketch the DOS
E [eV]

-10

-12

Pt-Pt

14 -

G

16 E
g~ . -

0 Kk wa DOS

Large bandgap (> 3 eV) => white insulator 594




Krogman’s salt: a quasi one-dimensional material

K,[Pt(CN),] vs. K,[Pt(CN),]Cl, 5: what are the differences?

E [eV]
[ A

Assuming the same
band structure (the same  «}-
crystal structure):

Fermi level will be lower M 5 > 2
(d77 instead of d®) N

Partly filled d,> band

=> |tinerant electrons
along the c¢* direction

=> metallic conductivity
along c*

BUT is the crystal s = - -
structure the same?

595



Krogman’s salt: a quasi one-dimensional material
K,[Pt(CN),] vs. K,[Pt(CN),]Cl, 5: what are the differences?

Structure of K,[Pt(CN),]

Structure of K,[Pt(CN),]Cl, 4

596



Krogman’s salt: a quasi one-dimensional material
K,[Pt(CN),] vs. K,[Pt(CN),]Cl, 5: what are the differences?

Chains of square planar [Pt(CN),J* units: "eclipsed" vs. staggered

Xk

—a —=
[Pt(CN),]*

Pt-Pt distance: 3.3 A

[Pt(CN),]"-"
Pt-Pt distance: 2.7 A

Why is the Pt-Pt distance shorter? Why staggered conformation? | ..,




Krogman’s salt: a quasi one-dimensional material
1) What are the consequences of the cell doubling?

-]

Doubled direct cell => half reciprocal cell

2)

0 — w/l1a)

m —

-

0 w/(2a) w/a 7 0 /'

a'=2a
Folding mechanism doubled cell

2 basis orbitals:

Nee@ 2)20
?
E
QO k—= ¥/’ 0 k= w7/’
a'= 3a a's 4g

tripled - quadrupled

598



= ] =

-—Ea—-— | : nk-2
O OO-OA (k)= " (¢, + 1,1
n

In-22n-1 2n2n+i  2n+3

2 basis orbitals: W, (k)= Zeink'za (@5, = Drit)
1) 2)2-0 4

E (k)(2—atom — basis) =
e—ikn-Za .eik(n—l)-za < (¢2n 4+ ¢2n+1) [—A[‘(¢2n_2 + ¢2n_1) >
4 e—ikn-Za ] eikn-Za < (¢2n + ¢2n+1) ﬁ‘(¢2n -+ ¢2n+1) >

—ikn-2 k(n+1)-2 d
re NN (gt gy (B ) >

—e "B+ 2a+2B+"pB
=2a+2[+2pcos2ka 598



Similarly: £ (k)2 - atom — basis) =
e—ikn-Za ) eik(n—l)-Za < (¢2n . ¢2n+1)[f[‘(¢2n_2 — ¢2n_1) >
4 pikn2a | iknda (¢2n _ ¢2n+1) [—A[‘(%n — ¢2n+1) >

n e—ikn-2a ) eik(n+1)-2a < (¢2n _ ¢2n+1) [:[‘(¢2n+2 — ¢2n+3) >
=" B12a-28-"*p
=2a -2 -2 cos2ka

20040

doubling the unit cell size
a+4p doubles the energy per unit

o k— w200 cell 600




Krogman’s salt: a quasi one-dimensional material

1) What are the consequences of the cell doubling?
=> apply the folding mechanism

d states,
> nonbonding

/

Pt-CN,
simplified

601




Krogman’s salt: a quasi one-dimensional material
2) What are the consequences of the staggering?

d,, states: d,, states:
d bonding 0 antibonding nonbonding

=> does not depend on k

602



Krogman’s salt: a quasi one-dimensional material
2) What are the consequences of the staggering?

-1 -114

-134 =134

-15 -15

603



Krogman’s salt: a quasi one-dimensional material
Comparison of the densities of states

-

i

L oxidized I unoxidized

DOS —= DOS —=

Calculations in agreement with the observations:

K, [Pt(CN),]-3H,0: white insulator, c = 107 Q'em"’
K,[Pt(CN),]Cl, ;-3H,0: bronze metal, ¢ =10*2 Qcm" 604




PEIERLS (pay-earls) DISTORTION

"1D equally spaced chains with one electron per ion are
unstable”

such a system can lower its energy by distorting so as
to remove an electronic degeneracy.

1D Atomic Chain

—0—0—0—0—

Peierls Distortion

—0—0—00—

This is the solid state analogue of the Jahn-Teller effect.
- symmetry breaking lifts a degeneracy

605



JAHN-TELLER EFFECT

a non-linear molecule with unequally-occupied degenerate orbitals will
undergo a symmetry-lowering deformation that breaks the degeneracy,
stabilizing the system.

e.g. tetragonal distortion lowers the energy of a d° complex

RS
______________________ i

A
unhn It

b

octahedral tetragonal

606



PEIERLS DISTORTION OF H ATOM CHAIN

—————

- ]-

m —

<—E;

O w/(2a) w/a

-—20—

<—E;
symmetric pairing distortion opens
a band gap at the Fermi level.

><><¢ > <

0 w/a’
a'=2a

D> € > € > <.

0 k—  w/(2a) 607



befora” \\ 11
| *—9o o o o o ' \f‘
E h
Il — s -a
Ilaﬂerll
0 k—= /(20

distortion stabilizes the system

- effect is largest for 3 filled band

- band gap forms

- H, molecules more stable than H chain

— charge density waves

WY

N

Iﬁh

lons unitormly spaced

00000000
I

uniform electron density

lons develop static periodic distortion

000 000 000

electron density modulated (charge density wave)



Valence Band (HOMO o)
X1 X2 X3

OO o0 OO k=n/a’
Q Qw2

OO0

Conduction Band (LUMO ¢")
Xo Xi X2 X3 X4 Xs

00 @O O@ «ww
O Ok=rad

0@ -+

Intra Inter
o Lo
4] non
o G -

Intra Inter
o c o
o non
o o -

g—=a”

Band runs
uphill

(o Al

Band runs
downhill
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POLYACETYLENE

another 1D Peierls distortion — localization of pi electrons

Reduction with alkali metal (n-doping):

: [CH], + x Na --> [CH],* + x Na"
¢ 2 Oxidation with halogen (p-doping):
I; I; [CH]n + 3x/2 |2 --> [CH]nx+ + X |3-

pure PA = insulator  doped PA = conductor

Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa
Nobel Prize in Chemistry 2000, organic semiconductors

2D and 3D Peierls distortions also occur, sometimes forming band gaps



2D BAND STRUCTURE

a two-dimensional square net [s orbitals only (or p,)]

Simple Hiickel B
lz r.l.
2 T———O— . E. ° M
[
SRR ! d.l. 55
= - - EEJ J
ik .ma+ik na Brillouin zone
p(k)y=) """ g,
m,n T
Consider the crystal orbitals k, =0, k,=0
at special k points (high symmetry) 7

/7,////4’
7/

a%alaY

I'= (k=0, k=0, k,=0) X = (n/a, 0, 0) zone center I % 2% /é’
M = (m/a, m/a. 0) Y = (0, mw/a, 0) : * ’ 7
R = (n/a. w/a, m/a) Z =100, n/a) alla.o. in phase ’/Z’ @

611



Elementary Band Theory for Extended Solids

More dimensions: a two-dimensional square net [s orbitals only (or p,)]

b,

schematic
band structure

Crystal orbitals at special k points
ky=m/(2a)ky =0 ky, ky = 7 /(2a) kx =0, ky= 7/(2a)

.99

612



How to calculate E(k)?

ik . ma+ik na
p(k)=2 """ g,
m,n

Crystal Schrodinger Equation: HW(k) — E(k)l)”(k)
< w‘ﬁ‘w >
E(k) =
<yly >

E(k)=a+2[(cosk.a+cosk a)

613



RS =
Js S
- —
2 =
| +
s S S
R — g
\\\

S —— — (S Su——
———

E(k)=a+2[f(cosk.a+cosk a)

W =477




© WV S
o © °
S A

. >

] \_I

2 =

| +

s S S

R ke T e m———
\\\

,A!: ........... = |

E(k)=a+2[(cosk.a+cosk a)



Elementary Band Theory for Extended Solids

More dimensions: a two-dimensional square net [s and p orbitals]

Crystal orbitals at special k points
Py

schematic band structure




EFFECT OF LATTICE SPACING g, >0

consider the p, orbitals. For a square lattice: |5, <0

) B> |5,]
ecle T E(k)=a+2p,cosk.a+2p, cosk b
E
. Pog
Y M \
<z 48
. r
p.




For rectangular lattice with increased lattice constant in
the y-direction, p, is smaller than before:

B, E)=a+2p, coska+2p,cosk,b

X, Y not equivalent k-points
* less overlap in y-direction
than for square lattice

ap,

40,

\Y

618 Y




For rectangular lattice with very large lattice constant in

y-direction, p, is almost zero:

E(k)=a+2p, cosk.a+2p,cosk b

X, Y not equivalent k-points

* no overlap in y-direction,
so identical to 1D band
structurel

4p,

619 Y




3D BAND STRUCTURE

Brillouin Zone of Diamond and
Zincblende Structure (FCC Lattice)

Notation:
(c) :
| Notation: A<=>[100]
_, — Zone Edge or direction
surface : Roman  y._sgz edge
alphabet along [100]
——— — Interior of Zone: direction
Greek alphabet
A<=>[111]
. — Center of Zone or direction
E origin: I
L<=>BZ edge
along [111]

direction®”



The first Brillouin zone

4n/a,

High symmetry points and directions

I = 27/a,[0, 0, 0]
X = 2n/ag[1, 0, 0]

L = 2n/ay[%, Y, Y]
U = 2n/ag[1, Y, Yi]
W = 2n/ag[1, %, 0]
K = 2n/ag[%, %, 0]

A= 2n/ag[g, 0, 0],
A= 2JltlaO[t_:l .C_” dl
I=2n/aylt, &, 0],
Z = 2n/ay1, &, 0],
Q = 27[160[1";: Y2 : g]l
S =2n/ay[1, £. &),

0<z<
0<e<%
0<e<%
0<e<%
0<e<h%
0<e<V%

621



Electronic Band Structure of Si

A X UK 2 It

A1 150, <110>

FI—IIIII
Energy [eV]
o & R ;
Il ‘\ e
’ S N \ L -
’l o~ -~ >
B | i
I' »
r ) ’
l ).
‘l
1]
el / ;
\‘ 2
A o o, A -
iy 7/
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