Electronic Structure

- Drude theory
- Free electron gas
- Nearly free electron model
- Tight-binding model
- Semiconductors

$$
\begin{aligned}
& \text { Reading: A/M 1-3,8-10 } \\
& \text { G/S 7,11 } \\
& \text { Hoffmann p. 1-20 }
\end{aligned}
$$

DC ELECTRICAL CONDUCTIVITY

A constant electric field Eresults in an electrical current per unit area J :

$$
\mathbf{J}(\mathbf{r})=\sigma \mathbf{E}(\mathbf{r})
$$

where the proportionality constant σ is the electrical conductivity
J (current density): $A \mathrm{Cm}^{-2}$
E (field):
σ (conductivity): $\quad \mathrm{A} \mathrm{Cm}^{-1} \mathrm{~cm}^{-1}$ (or $\Omega^{-1} \mathrm{~cm}^{-1}$)
if the conductivity is a constant (field-independent), we have Ohm's Law

$$
\begin{aligned}
& \text { large } \sigma=\text { conductor (metal) } \\
& \text { moderate } \sigma=\text { semiconductor } \\
& \text { small } \sigma=\text { insulator }
\end{aligned}
$$

$$
V=I R
$$

the inverse of the conductivity is the resistivity, ρ

$$
\rho=\frac{1}{\sigma}
$$

RESISTIVITY FORMULA

ρ is a material property, independent of geometry, with units of ohm $\cdot \mathrm{cm}$

Resistivities of Real Materials

Compound Resistivity ($\Omega-\mathrm{cm}$) Compound Resistivity ($\Omega-\mathrm{cm}$)

Ca	3.9×10^{-6}	Si	~ 0.1
Ti	42×10^{-6}	Ge	~ 0.05
Mn	185×10^{-6}	ReO_{3}	36×10^{-6}
Zn	5.9×10^{-6}	$\mathrm{Fe}_{3} \mathrm{O}_{4}$	52×10^{-6}
Cu	1.7×10^{-6}	TiO_{2}	9×10^{4}
Ag	1.6×10^{-6}	ZrO_{2}	1×10^{9}
Pb	21×10^{-6}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	1×10^{19}

Most semiconductors in their pure form are not good conductors, they need to be doped to become conducting.

Not all so called "ionic" materials like oxides are insulators.

DRUDE MODEL (1900)

classical (Newtonian) theory of electrical conductivity in metals
Kinetic theory of gases applied to electrons in a metal. Metal treated as a "gas" of mobile valence electrons moving against a background of immobile ions.
Conductivity is determined by electrons colliding with "scatterers". Assumptions:

1. no electron-electron forces (independent electron approximation)
2. between collisions, no electron-ion forces (free electron approx.)
3. collisions are instantaneous, leading to abrupt changes in e^{-}velocity
4. collisions randomize the e^{-}velocity to a thermal distribution
5. there is a mean time between collisions of τ (collision time)

$P \quad d t$ Probability of an electron undergoing a collision during $\tau \quad$ time interval $d t$

If n electrons per unit volume move with velocity \mathbf{v} across an area A in time $d t$, the charge crossing this area in time $d t$ is $-n e v A d t$

$$
\mathbf{J}=- \text { nev }
$$

This is the net current density (the net drift current)
Let's find an expression for the average electron velocity (the drift velocity). Without a field, $\langle\mathbf{v}>=0$. But with a field \mathbf{E},

$$
\mathbf{v}=\mathbf{a t}=\mathrm{Ft} / \mathrm{m}=-\mathrm{e} \mathbf{E t} / \mathrm{m}
$$

average time between collisions is τ, so: $\mathbf{v}_{\text {drift }}=-\mathrm{e} \mathbf{E} \tau / \mathrm{m}$

$$
\mathbf{J}=- \text { nev }=\left(\frac{n e^{2} \tau}{m}\right) \mathbf{E}=\sigma \mathbf{E} ; \quad \sigma=\frac{n e^{2} \tau}{m}
$$

CARRIER MOBILITY

The proportionality constant between the absolute drift velocity and the electric field is called the electron mobility, μ :

$$
\left|\mathbf{v}_{\mathrm{drift}}\right|=\left(\frac{\mathrm{e} \tau}{\mathrm{~m}}\right) \mathbf{E}=\mu \mathbf{E} ; \mu=\frac{\mathrm{e} \tau}{\mathrm{~m}} ; \sigma=n e \mu
$$

Note: τ is the collision time, not the electron lifetime!

TABLE 7.1 Parameters of Some Metals at $\boldsymbol{T}=\mathbf{2 9 5} \mathrm{K}$
$\left.\begin{array}{lcccccc}\hline & \begin{array}{c}\text { Atomic } \\ \text { Number }\end{array} & \begin{array}{c}\text { Valence } \\ \text { Metal }\end{array} & \begin{array}{c}\text { Mass } \\ \text { Density } \\ \rho_{m}\end{array} & \begin{array}{c}\text { Electron } \\ \text { Density } \\ \left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\end{array} & \begin{array}{c}n \\ \left(10^{29} \mathrm{~m}^{-3}\right)\end{array} & \begin{array}{c}\text { Conductivity } \\ \sigma \\ {\left[10^{6}(\Omega \cdot \mathrm{~m})^{-1}\right]}\end{array}\end{array} \begin{array}{c}\text { Collision } \\ \text { Time } \\ \tau\end{array}\right]\left(10^{-15} \mathrm{~s}\right)$.

PREDICTIONS OF DRUDE THEORY

predicted collision time: $\tau=\frac{\sigma m}{n e^{2}} \quad \Rightarrow \quad 0^{-15}-\mathbf{1 0}^{-14} \mathrm{sec}$
predicted mean free path: $l=v_{0} \tau \quad \square \mathbf{1 - 1 0} \AA$ average electronic speed: $\sim 10^{5} \mathrm{~m} / \mathrm{s}$ from equipartition theory
but experimental mean free paths can be $10^{3}-10^{8} \AA$
\rightarrow electrons do not simply bounce off the ions!
Drude model provides good explanations of:

1. DC and AC conductivity of metals
2. Hall effect (magnitude, but not sign)
3. Wiedemann-Franz Law $(\kappa / \sigma=L T)$
4. thermal conductivity due to electrons near room temperature but, since it uses classical statistical mechanics (Maxwell-Boltzmann), it gets most other quantities wrong (heat capacity, thermopower, etc.).

SOMMERFELD THEORY

the simplest quantum mechanical theory of electrons in metals
Applies Pauli Exclusion Principle to kinetic gas theory. Ignores all forces except the confining surfaces of the solid, treating electrons as free \& indy particles in a box.

The quantum mechanical (QM) treatment has two major effects:

1. only electrons with certain wave vectors (energies) are allowed
2. quantum statistical mechanics (Fermi-Dirac distribution)
\rightarrow the Pauli exclusion principle must be obeyed (one e^{-}per state)
The allowed energy levels for an electron in a 3D box of volume V are found by solving the (time-independent) Schrödinger equation
where the Hamiltonian,

$$
H \psi=E \psi
$$

(the energy operator) is:

$$
H=\frac{p^{2}}{2 m}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)=-\frac{\hbar^{2}}{2 m} \nabla^{2}
$$

the Schrödinger equation becomes: $\quad-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=E \psi$
the general solution is a plane wave: $\psi_{\mathrm{k}}(\mathbf{r})=\frac{1}{\sqrt{V}} e^{i \mathbf{k} \cdot \mathbf{r}}$

$$
\text { with energy: } \quad E(\mathbf{k})=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m}
$$

electrons in the metal behave as plane waves of wave vector \mathbf{k}

$$
\mathbf{p}=m \mathbf{v}=\hbar \mathbf{k} \quad ; \quad k=\frac{2 \pi}{\lambda}
$$

we next see that the boundary conditions restrict k to discrete values
we require that the electrons stay in the crystal, and this places a constraint on the allowed values of k
we apply Born-von Karman (periodic) boundary conditions to keep the electrons in the metal. For a cubic crystal of edge length L,

$$
\begin{aligned}
& \psi(x+L, y, z)=\psi(x, y, z) \\
& \psi(x, y+L, z)=\psi(x, y, z) \\
& \psi(x, y, z+L)=\psi(x, y, z)
\end{aligned}
$$

this condition is met only when: $e^{i k_{x} L}=e^{i k_{y} L}=e^{i k_{z} L}=1$
in other words: $k_{x}=\frac{2 \pi n_{x}}{L} ; k_{y}=\frac{2 \pi n_{y}}{L} ; k_{z}=\frac{2 \pi n_{z}}{L}$
where n_{x}, n_{y}, n_{z} are integers

DENSITY OF k-SPACE POINTS in 2D

Figure 2.2
Points in a two-dimensional k-space of the form $k_{s}=$ $2 m n_{x} / L, k_{y}=2 \pi n_{y} / L$. Note that the area per point is just $(2 \pi / L)^{2}$. In d dimensions the volume per point is $(2 \pi / L)^{t}$.
each electron level occupies an area in k-space of:

$$
\left(\frac{2 \pi}{L}\right)^{2}
$$

the number of levels in a large area of k-space Ω is:
$\frac{\text { total area }}{\text { area per k-point }}=\frac{\Omega}{\left(4 \pi^{2} / L^{2}\right)}=\frac{\Omega A}{4 \pi^{2}}$
the density of k-space points per unit area is:

3D CASE

the allowed wave vectors are those whose Cartesian coordinates in k-space are integral multiples of $2 \pi / L$

each electron level occupies a volume in k-space of:

$$
\left(\frac{2 \pi}{L}\right)^{3}
$$

the number of levels in a large volume of k -space Ω is:

$$
\frac{\Omega}{\left(8 \pi^{3} / L^{3}\right)}=\frac{\Omega V}{8 \pi^{3}}
$$

the k-space density of levels is:

$$
\frac{V}{8 \pi^{3}}
$$

Assume that we have N electrons in our solid. To build up the ground state of the solid (0 K), we add the electrons one by one into the allowed levels according to the Pauli exclusion principle:

- each allowed wave vector (level) has two electronic states, spin up and spin down
since energy is quadratic in wave vector: $\quad E(\mathbf{k})=\frac{\hbar^{2} k^{2}}{2 m}$ the lowest energy level corresponds to $k=0$ (2 electrons) the next lowest is $|k|=2 \pi / L$ (6 levels, 12 electrons total), etc.
when N is enormous, the occupied region of k-space will look like a sphere (the Fermi sphere). The radius of this sphere is labeled k_{F} :
volume of the Fermi sphere: $\Omega_{F}=\frac{4}{3} \pi k_{F}^{3}$

at 0 Kelvin, the ground state of the N -electron system is formed by occupying all single-particle levels with k less than k_{F}
the number of allowed values of k is: $\left(\frac{4}{3} \pi k_{F}^{3}\right)\left(\frac{V}{8 \pi^{3}}\right)=\frac{k_{F}^{3}}{6 \pi^{2}} V$
the total number of electrons is twice this: $N=\frac{k_{F}^{3}}{3 \pi^{2}} V$
the free electron density n is then: $n=\frac{N}{V}=\frac{k_{F}^{3}}{3 \pi^{2}}$

FERMI SPHERE

The surface of the Fermi sphere separates occupied and unoccupied states in k-space.

- bounded by Fermi surface

$$
k_{F}=\left(3 \pi^{2} n\right)^{1 / 3}
$$

Fermi energy

- radius is Fermi wave vector
- Fermi energy: $E_{F}=\hbar^{2} k_{F}^{2} / 2 m$
- Fermi momentum: $p_{F}=\hbar k_{F}$
- Fermi velocity: $v_{F}=\hbar k_{F} / m$
- Fermi temperature: $T_{F}=E_{F} / k_{B}$

TABLE 7.3 Free-Electron Parameters for Various Metals

Metal	k_{F} $\left(10^{10} \mathrm{~m}^{-1}\right)$	v_{F} $\left(10^{6} \mathrm{~m} / \mathrm{s}\right)$	E_{F} (eV)	T_{F} $\left(10^{3} \mathrm{~K}\right)$
Ag	1.20	1.39	5.49	63.7
Al	1.75	2.03	11.7	135
Ba	0.977	1.13	3.64	42.2
Be	1.93	2.23	14.2	165
Ca	1.11	1.28	4.68	54.3
Cd	1.40	1.62	7.47	86.6
Cs	0.646	0.748	1.59	18.4
Cu	1.36	1.57	7.03	81.5
In	1.50	1.74	8.63	100
K	0.745	0.863	2.12	24.6
Li	1.12	1.29	4.74	55.0
Mg	1.37	1.58	7.11	82.5
Na	0.922	1.07	3.24	37.6
Rb	0.698	0.808	1.86	21.5
Sr	1.02	1.18	3.94	45.7
Zn	1.57	1.82	9.40	109

in terms of the free electron density, the

$$
E_{F}=\frac{\hbar^{2}\left(3 \pi^{2} n\right)^{2 / 3}}{2 m}
$$

the total energy of the ground-state electron gas is found by adding up the energies of all the levels within the Fermi sphere.
it's easiest to integrate over concentric shells:

$$
\begin{aligned}
& E_{t o t}=\frac{\hbar^{2} V}{2 \pi^{2} m} \int_{0}^{k_{F}} k^{4} d k=\frac{\hbar^{2} k_{F}^{5} V}{10 \pi^{2} m}
\end{aligned}
$$

by substituting for the volume in terms of $\mathrm{N}: V=\frac{3 \pi^{2} N}{k_{F}^{3}}$.
we can find the average energy per electron:

$$
\frac{E_{t o t}}{N}=\frac{3}{10} \frac{\hbar^{2} k_{F}^{2}}{m}=\frac{3}{5} E_{F}
$$

The average electron energy at 0 K is 60% of the Fermi energy.
we can also write this result as: $\frac{E_{t o t}}{N}=\frac{3}{5} k_{B} T_{F}$
Typically, $T_{F} \approx 5 \times 10^{4} \mathrm{~K}$, while the energy per electron in a classical electron gas $\left(1.5 \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$ vanishes (= zero) at 0 K .
a classical gas achieves this E / N only at $T=(2 / 5) T_{F}$

QUANTUM DEGENERACY PRESSURE

the electron gas exerts a quantum mechanical pressure (called the degeneracy pressure) that keeps the free electron gas from collapsing at 0 K :

$$
\begin{gathered}
P=-\left(\frac{\partial E_{\text {tot }}}{\partial V}\right)_{N} \\
E_{t o t}=\frac{\hbar^{2} k_{F}^{5} V}{10 \pi^{2} m}=\frac{\hbar^{2}\left(3 \pi^{2} N\right)^{5 / 3}}{10 \pi^{2} m} V^{-2 / 3} \\
P=\frac{2}{3} \frac{\hbar^{2}\left(3 \pi^{2} N\right)^{5 / 3}}{10 \pi^{2} m} V^{-5 / 3}=\frac{2}{3} \frac{E_{\text {tot }}}{V}
\end{gathered}
$$

The degeneracy pressure is a consequence of the Pauli principle. White dwarfs and neutron stars are stabilized by this pressure.

3D DENSITY OF STATES

the density of states $g(E)$ is the number of one-electron states (including spin multiplicity) per unit energy and volume

$$
g(E)_{3 D} \equiv \frac{1}{V} \frac{d N}{d E}
$$

$N=2 \times$ Fermi sphere volume $\times \#$ levels per unit volume

$$
\begin{gathered}
N=2 \times \frac{4 \pi}{3} k^{3} \times \frac{V}{8 \pi^{3}} \\
N=\frac{V}{3 \pi^{2} \hbar^{3}}\left(2 m^{*} E\right)^{3 / 2} \\
g(E)_{3 D}=\frac{1}{V} \frac{d N}{d E}=\frac{1}{2 \pi^{2}}\left(\frac{2 m^{*}}{\hbar^{2}}\right)^{3 / 2} E^{1 / 2}
\end{gathered}
$$

EFFECT OF REDUCED DIMENSIONALITY ON DOS

2D sheet - quantum well

1D quantum wire

$$
g(E)=\frac{m^{*}}{\pi \hbar^{2} L_{z}}
$$

Density of states

?

3D

$$
\begin{aligned}
& \psi=A e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)} \\
& E=\frac{\hbar^{2}}{2 m_{e}^{*}}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)
\end{aligned}
$$

$$
\psi=A \sin k_{z} z \cdot e^{i\left(k_{x} x+k_{y} y\right)}
$$

Well $E=\frac{h^{2} n_{z}^{2}}{8 m_{e}^{*} L_{z}^{2}}+\frac{\hbar^{2}}{2 m_{e}^{*}}\left(k_{x}^{2}+k_{y}^{2}\right)$
$\psi=A \sin k_{x} x \cdot \sin k_{y} y \cdot e^{i k_{z} z}$

$$
E=\frac{h^{2}}{8 m_{e}^{*}}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}\right)+\frac{\hbar^{2}}{2 m_{e}^{*}} k_{z}^{2}
$$

$$
\psi=A \sin k_{x} x \cdot \sin k_{y} y \cdot \sin k_{z} z
$$

Dot $E=\frac{h^{2}}{8 m_{e}^{*}}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right)$

Quantum Confinement and Dimensionality

FERMI-DIRAC DISTRIBUTION FUNCTION

At absolute zero the occupancy of states is 1 for $E \leq E_{F}$ and 0 for $E>E_{F}$. At finite temperatures, some electrons near E_{F} have enough thermal energy to be excited to empty states above E_{F}, with the occupancy $f\left(E_{k}, T\right)$ given by the Fermi-Dirac distribution function.

Fermi function:

$$
f\left(E_{k}, T\right)=\frac{1}{e^{\left(E_{k}-\mu\right) / k_{B} T}+1}
$$

- consequence of Pauli exclusion principle
- plays central role in solid state physics
- μ is the chemical potential ($\mu=\mathrm{E}_{\mathrm{F}}$ @ 0 K)

Energy distribution of electrons

$$
\begin{gathered}
f(E)=\frac{1}{e^{\left(E-E_{F}\right) / k_{B} T}+1}{ }^{*} f=0.5 \text { at } \mathrm{E}=\mathrm{E}_{\mathrm{F}}
\end{gathered}
$$

STATISTICAL DISTRIBUTION FUNCTIONS

Boltzmann distribution:

- for independent, distinguishable classical particles (high T, low density, so quantum effects negligible)

$$
\begin{gathered}
f_{B}(E)=\frac{1}{\exp \left[(E-\mu) / k_{B} T\right]} \\
0<f(E)<N
\end{gathered}
$$

Fermi-Dirac distribution:

- for independent, identical Fermions (particles of half-integer spin)

$$
\begin{gathered}
f_{F D}(E)=\frac{1}{\exp \left[(E-\mu) / k_{B} T\right]+1} \\
0<f(E)<1
\end{gathered}
$$

Bose-Einstein distribution:

- for independent, identical Bosons (particles of integer spin)

$$
\begin{gathered}
f_{B E}(E)=\frac{1}{\exp \left[(E-\mu) / k_{B} T\right]-1} \\
0<f(E)<N
\end{gathered}
$$

Fermi-Dirac Function

The Fermi-Dirac function gives the fraction of allowed states, $f(E)$, at an energy level E, that are populated at a given temperature.

$$
f(E)=1 /\left[1+\exp \left\{\left(E-E_{F}\right) / k T\right\}\right]
$$

where the Fermi Energy, E_{F}, is defined as the energy where $f(E)=1 / 2$. That is to say one half of the available states are occupied. T is the temperature (in K) and k is the Boltzman constant ($\mathrm{k}=8.62 \times 10^{-5}$ eV/K)

As an example consider $f(E)$ for $T=300 \mathrm{~K}$ and a state 0.1 eV above E_{F} :

$$
\begin{gathered}
f(E)=1 /\left[1+\exp \left\{(0.1 \mathrm{eV}) /\left((300 \mathrm{~K})\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)\right\}\right]\right. \\
f(E)=0.02=2 \%
\end{gathered}
$$

Consider a band gap of 1 eV .

$$
f(1 \mathrm{eV})=1.6 \times 10^{-17}
$$

See that for even a moderate band gap (Silicon has a band gap of 1.1 eV) the intrinsic concentration of electrons that can be thermally excited to move about the crystal is tiny. Thus pure Silicon (if you could make it) would be quite insulating.

Fermi function $f(E)$ vs. energy, with $E_{F}=0.55 \mathrm{eV}$ and for various temperatures in the range $50 \mathrm{~K} \leq \mathrm{T} \leq 375 \mathrm{~K}$.

$$
f(E)=\frac{1}{e^{\left(E-E_{F}\right) / k_{B} T}+1}
$$

For $E-E_{F} \gg k T, f(E)$ reduces to the classical Boltzmann function:

$$
f(E)=\frac{1}{e^{\left(E-E_{F}\right) / k_{B} T}+1} \approx \frac{1}{e^{\left(E-E_{F}\right) / k_{B} T}}=e^{-\left(E-E_{F}\right) / k_{B} T}=e^{-\Delta E / k_{B} T}
$$

Metals, Semiconductors \& Insulators

Metal

DOS
Semimetal

DOS

Semiconductor /Insulator

In a metal the Fermi level cuts through a band to produce a partially filled band. In a semiconductor/insulator there is an energy gap between the filled bands and the empty bands. The distinction between a semiconductor and an insulator is artificial, but as the gap becomes large the material usually becomes a poor conductor of electricity. A semimetal results when the band gap goes to zero.

Fermi Dirac Function Metals and Semiconductors

Energy blowe Fermilewi (fov)
$f(E)$ as determined experimentally for Ru metal (note the energy scale)

$f(E)$ for a semiconductor

f(E) for METALS

At normal temperatures, $k T$ is small compared with E_{F}. Since only those electrons within $\sim k T$ of E_{F} can be thermally promoted or participate in electrical conduction, most of the electrons are "frozen out".

$f(E)$ for SEMICONDUCTORS

Context of Fermi level for a semiconductor

No electrons can be above the valence band at OK, since none have energy above the Fermi level and there are no available energy states in the band gap.

At high temperatures, some electrons can reach the conduction band and contribute to electric current.
www.hyperphysics.edu

CARRIER DENSITY in SEMICONDUCTORS

$$
n=\int_{-\infty}^{\infty} f(E) g(E) d E
$$

Probability of occupation of state
Conduction Band
Number of available energy states

IMPORTANCE OF $g(E)$ and $f(E)$

$$
\begin{aligned}
U & =\int E f(E) g(E) d E \\
n & =\int f(E) g(E) d E \\
C & =\frac{\partial}{\partial T} \int E f(E) g(E) d E \\
k & =\frac{1}{d} \frac{\partial}{\partial T} \int E f(E) g(E) \nu(E) \Lambda(E) d E
\end{aligned}
$$

$f(E) g(E)$ product for a bulk semiconductor, showing the "pools" of free electrons and holes at the band edges

NEARLY-FREE ELECTRON MODEL

Starts from the free electron perspective $(V=0)$ and adds a very weak periodic potential to represent the ions. Electrons still independent.

- since the potential is very weak, we can use perturbation theory to calculate how the free electron wavefunction and energies are changed.

Bloch's Theorem: The wavefunction of an electron in a periodic potential can be written as a plane wave times a function with the periodicity of the Bravais lattice.

$$
\psi_{\mathbf{k}}(\mathbf{r})=u_{\mathbf{k}}(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}}
$$

with: $\quad u_{\mathbf{k}}(\mathbf{r})=u_{\mathbf{k}}(\mathbf{r}+\mathbf{R})$
main result: The periodic potential deforms the parabolic $E(k)$ of free electrons only near the edge of the Brillouin zone; this results in an energy gap at the Brillouin zone boundary (i.e., when $k \approx 2 \pi / a$).

- most useful for s - and p-block metals (e.g., alkali metals)

ELECTRONIC STRUCTURE METHODS

TIGHT-BINDING MODEL

Molecular orbital ("chemical") approach to the electronic structure of infinite 3D solids.

- starts from basis of linear combinations of atomic orbitals (LCAOs), and considers interactions between atomic sites as perturbations
- opposite simplification of the free electron models

coefficient atomic orbital
- particularly useful for insulators, d bands of transition metals, polymers, some semiconductors, and other "tightly-bound" systems

Molecular Orbital Theory

Diatomic Molecules

From MOs to Band Theory

MO diagram for H_{2}.

From MOs to Band Theory

Look at what happens when we move from two hydrogens to four hydrogens in a chain.

H_{4}

From MOs to Band Theory

Eight hydrogens gives eight MOs and an even smaller HOMO-LUMO gap.

MO Theory for Solids - Qualitative Expectations

Interaction of two atoms:

N atomic orbitals give N molecular orbitals.
when N is enormous, the MOs form bands ($\Delta E \ll k T$)
bands form only when there is sufficient spatial overlap between atomic orbitals to form delocalized states ... depends on interatomic distance

greater orbital overlap \rightarrow wider bands at high enough pressures, many solids become metallic ${ }_{58}$

Orbital overlaps for sodium:

Metals, Semiconductors \& Insulators

Metal

DOS
Semimetal

DOS

Semiconductor /Insulator

In a metal the Fermi level cuts through a band to produce a partially filled band. In a semiconductor/insulator there is an energy gap between the filled bands and the empty bands. The distinction between a semiconductor and an insulator is artificial, but as the gap becomes large the material usually becomes a poor conductor of electricity. A semimetal results when the band gap goes to zero.

The differences between metals, semimetals, semiconductors, and insulators depend on:

- the band structure
- whether the valence band is full or only partly full
- the magnitude of any energy gap between full and empty bands
filled valence band, empty conduction band \rightarrow semiconductor/insulator

Orbital Interactions: Key Points

- The overlap of two atomic orbitals is dependent upon:
- symmetry of the orbitals
- distance between the orbitals
- spatial extent of the orbitals
- the energy difference between orbitals
- Increasing the overlap (spatial and energetic) leads to the following:
- Stabilization of the bonding MO
- Destabilization of the antibonding MO
- The antibonding MO is destabilized to a greater extent than the bonding MO is stabilized
- The spatial overlap in a bond depends upon symmetry
- It decreases as the number of nodal planes increases, $\sigma>\pi>\delta$
- π and particularly δ bonds are more sensitive to changes in bond angle

Elementary Band Theory for Molecules

Schrödinger equation

$$
\hat{H} \psi=E \psi
$$

Solving the Schrödinger equation after applying simplifications

tight binding approach

LCAO: linear combination of atomic wavefunctions, the Atomic Orbitals ϕ

$$
\psi=\sum_{i} c_{i} \phi_{i}
$$

ϕ is normalized, thus $\int \phi_{\mathrm{i}}{ }^{2} \mathrm{~d} \tau=1$ with $d \tau=\partial x \partial y \partial z$
Calculate the expectation value of $\hat{\mathrm{H}}$:

$$
\mathrm{E}=\frac{\int \psi \hat{\mathrm{H}} \psi \mathrm{~d} \tau}{\int \psi^{2} \mathrm{~d} \tau}
$$

c_{i} : coefficients
AO's: basis set

For a minimal $E: \partial E / \partial c_{i}=0$

Elementary Band Theory for Molecules

Case studies: 1) the diatomic case

$$
\psi=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \phi_{\mathrm{i}}=\mathrm{c}_{1} \phi_{1}+\mathrm{c}_{2} \phi_{2}
$$

For a minimal $E: \partial E / \partial c_{i}=0$, i.e.
$\partial E / \partial c_{1}=0$ and $\partial E / \partial c_{2}=0$
=> two solutions

$$
\mathrm{E}=\frac{\int \psi \hat{\mathrm{H}} \psi \mathrm{~d} \tau}{\int \psi^{2} \mathrm{~d} \tau} \rightarrow \text { numerator }(\mathrm{I})
$$

$$
\int \psi \hat{H} \psi d \tau=\int\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right) \hat{H}\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right) d \tau
$$

$$
=\int\left(c_{1}^{2} \phi_{1} \hat{H} \phi_{1}+2 c_{1} c_{2} \phi_{1} \hat{H} \phi_{2}+c_{2}^{2} \phi_{2} \hat{H} \phi_{2}\right) d \tau
$$

$$
=\mathrm{c}_{1}^{2} \int_{\downarrow}^{\int \phi_{1} \hat{\mathrm{H}} \phi_{1} \mathrm{~d} \tau}+2 \mathrm{c}_{1} \mathrm{c}_{2} \int_{\downarrow \phi_{1} \hat{H} \phi_{2} \mathrm{~d} \tau}^{\downarrow}+\mathrm{c}_{2}^{2} \int_{\phi_{2} \hat{\mathrm{H}} \phi_{2} \mathrm{~d} \tau}^{\text {Coulomb-integral }} \begin{gathered}
\alpha_{2}<0
\end{gathered}
$$

Coulomb-integral resonance-integral

$$
\alpha_{1}<0
$$

$$
\beta_{12}<0 \text { if bonding }
$$

Case studies: the diatomic case, continued

$$
\psi=\sum_{i} c_{i} \phi_{i}=c_{1} \phi_{1}+c_{2} \phi_{2}
$$

Numerator (I): $\quad \int \psi \hat{H} \psi d \tau=c_{1}{ }^{2} \alpha_{1}+2 \mathrm{c}_{1} \mathrm{c}_{2} \beta_{12}+\mathrm{c}_{2}{ }^{2} \alpha_{2}$
Denominator (II): $\int \psi^{2} \mathrm{~d} \tau=\int\left(\mathrm{C}_{1} \phi_{1}+\mathrm{C}_{2} \phi_{2}\right)^{2} \mathrm{~d} \tau$

$$
=\int\left(c_{1}^{2} \phi_{1}^{2}+2 c_{1} c_{2} \phi_{1} \phi_{2}+c_{2}^{2} \phi_{2}^{2}\right) d \tau
$$

$$
=\mathrm{c}_{1}{ }^{2} \underset{\int_{1}{ }^{2} \mathrm{~d} \tau}{\downarrow}+2 \mathrm{c}_{1} \mathrm{c}_{2} \int_{\downarrow \phi_{1} \phi_{2} \mathrm{~d} \tau}^{\downarrow}+\mathrm{c}_{2}{ }^{2} \underset{\int_{\phi_{2}}{ }^{2} \mathrm{~d} \tau}{\downarrow}
$$

$$
\mathrm{S}_{12} \geq 0 \text { if bonding }
$$

$$
\Rightarrow \int \psi^{2} \mathrm{~d} \tau=\mathrm{c}_{1}^{2}+2 \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{~S}_{12}+\mathrm{c}_{2}^{2}
$$

$\partial \mathrm{E} / \partial \mathrm{c}_{1}=0$

$$
\frac{\partial \mathrm{E}}{\partial \mathrm{c}_{1}}=\frac{\partial}{\partial \mathrm{c}_{1}} \frac{\mathrm{c}_{1}^{2} \alpha_{1}+2 \mathrm{c}_{1} \mathrm{c}_{2} \beta_{12}+\mathrm{c}_{2}^{2} \alpha_{2}}{\mathrm{c}_{1}^{2}+2 \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{~S}_{12}+\mathrm{c}_{2}^{2}}=0
$$

Use quotient rule!

Minimization with respect to coefficients c_{1} and c_{2} gives a system of two simultaneous equations

Case studies: the diatomic case, continued

$\left(\alpha_{1}-E\right) c_{1}+\left(\beta_{12}-E S_{12}\right) \mathrm{c}_{2}=0$
$\left(\beta_{12}-E S_{12}\right) c_{1}+\left(\alpha_{2}-E\right) c_{2}=0$
Secular determinant $=0$

$$
\begin{aligned}
& \text { ecular determinant }=0 \\
& 0=\left|\begin{array}{ll}
\alpha_{1}-E & \beta_{12}-E S_{12} \\
\beta_{12}-E S_{12} & \alpha_{2}-E
\end{array}\right| \quad 0=\left|\begin{array}{l}
\text { General rule: } \\
C^{B}
\end{array}\right|=\xrightarrow{\mathrm{AD}}-\underset{\rightarrow}{\mathrm{BC}} \\
& 0=\left(\alpha_{1}-E\right)\left(\alpha_{2}-E\right)-\left(\beta_{12}-E S_{12}\right)\left(\beta_{12}-E S_{12}\right)
\end{aligned}
$$

Case studies: 1a) the diatomic homoatomic case, e.g. H_{2}

$$
\begin{aligned}
& \alpha_{1}=\alpha_{2}=\alpha \\
& 0=(\alpha-E)(\alpha-E)-(\beta-E S)(\beta-E S)=(\alpha-E)^{2}-(\beta-E S)^{2} \\
\Rightarrow & (\alpha-E)= \pm(\beta-E S)
\end{aligned}
$$

Case studies: the diatomic homoatomic case, e.g. H_{2}
$\alpha-E= \pm(\beta-E S)$: two solutions, \mathbf{A} and B
A

$$
\begin{aligned}
& \alpha-E=-(\beta-E S) \\
& \alpha+\beta=E(1+S) \\
& E=(\alpha+\beta) /(1+S) \\
& c_{1}=1 / \sqrt{2}[2(1+S)]=c_{2}
\end{aligned}
$$

B

$$
\begin{aligned}
& \alpha-E=\beta-E S \\
& \alpha-\beta=E(1-S) \\
& E=(\alpha-\beta) /(1-S) \\
& c_{1}=1 / \sqrt{ }[2(1-S)]=-c_{2}
\end{aligned}
$$

Calculated without any approximation

Overlap Integral S: proportional to degree of spatial overlap between two orbitals. It is the product of wave functions centered on different lattice sites. Varies from 0 (no overlap) to 1 (perfect overlap).

Coulomb Integral α : It is the kinetic and potential energy of an electron in an atomic orbital experiencing interactions with all the other electrons and all the positive nuclei

Resonance Integral β_{12} : Gives the energy of an electron in the region of space where orbitals 1 and 2 overlap. The value is finite for orbitals on adjacent atoms, and often assumed to be zero otherwise.

Case studies: more complex molecules

Conjugated molecules, e.g. ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$, and butadiene, $\mathrm{C}_{4} \mathrm{H}_{6}$ $\mathrm{C}_{2} \mathrm{H}_{4}$

VB: $\mathbf{s p}^{\mathbf{2}}$ for each C atom

Consider only the π bonds:

$$
\psi=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \phi_{\mathrm{i}}=\mathrm{c}_{1} \phi_{1}+\mathrm{c}_{2} \phi_{2}
$$

Problem solved by analogy:

$$
E_{1}=(\alpha+\beta) /(1+S), E_{2}=(\alpha-\beta) /(1-S)
$$

$$
\mathrm{C}_{4} \mathrm{H}_{6} \quad \psi=\sum_{\mathrm{i}} \mathrm{c}_{i} \phi_{\mathrm{i}}=\mathrm{c}_{1} \phi_{1}+\mathrm{c}_{2} \phi_{2}+\mathrm{c}_{3} \phi_{3}+\mathrm{c}_{4} \phi_{4}
$$

Secular determinant $=0$

$$
0=\left|\begin{array}{llll}
\alpha_{1}-E & \beta_{12}-E S_{12} & \beta_{13}-E S_{13} & \beta_{14}-E S_{14} \\
\beta_{21}-E S_{21} & \alpha_{2}-E & \beta_{23}-E S_{23} & \beta_{24}-E S_{24} \\
\beta_{31}-E S_{31} & \beta_{32}-E S_{32} & \alpha_{3}-E & \beta_{34}-E S_{34} \\
\beta_{41}-E S_{41} & \beta_{42}-E S_{42} & \beta_{43}-E S_{43} & \alpha_{4}-E
\end{array}\right|
$$

$\mathrm{C}_{4} \mathrm{H}_{6}$, continued

Problem 'solution' by approximation(s):

1. approx.: set $\beta_{\mathrm{ij}}=0$ unless adjacent atoms
\rightarrow Extended Hückel
2. approx.: set $\mathrm{S}_{\mathrm{ij}}=0$

Hückel determinant:
$\left|H_{i j}-E\right|=0$

> Extended Hückel determinant:
> $\left|\mathrm{H}_{\mathrm{ij}}-\mathrm{S}_{\mathrm{ij}} \mathrm{E}\right|=0$
$\mathrm{H}_{\mathrm{ii}}=\alpha_{\mathrm{i}}=\int \phi_{\mathrm{i}} \hat{H} \phi_{\mathrm{i}} \mathrm{d} \tau \quad$ Coulomb integral $\equiv-$ ionization potential
$\mathrm{H}_{\mathrm{ij}}=\beta_{\mathrm{ij}}=\int \phi_{\mathrm{i}} \hat{H} \phi_{\mathrm{j}} \mathrm{d} \tau \quad$ resonance integral

$$
\mathrm{H}_{\mathrm{ii}}=-\mathrm{I}_{\mathrm{i}}
$$

H_{ij} is proportional to the average of H_{ij} and H_{ij}
$\mathrm{C}_{4} \mathrm{H}_{6}$, secular determinant in the Simple Hückel approximation

$$
0=\left|\begin{array}{llll}
\alpha-E & \beta & 0 & 0 \\
\beta & \alpha-E & \beta & 0 \\
0 & \beta & \alpha-E & \beta \\
0 & 0 & \beta & \alpha-E
\end{array}\right|
$$

$\mathrm{C}_{4} \mathrm{H}_{6}$, continued

$$
\begin{aligned}
& 0=(\alpha-E)^{4}-3(\alpha-E)^{2} \beta^{2}+\beta^{4} \\
& \quad \text { solve in analogy to } \\
& \quad a x^{4}+b x^{2}+c=0, \text { with } u=x^{2}: \\
& \\
& \quad a u^{2}+b u+c=0 \\
& =>E=\alpha \pm 1.62 \beta, E=\alpha \pm 0.62 \beta
\end{aligned}
$$

General scheme for 'linear' polyenes

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{4}: \mathrm{E}=\alpha \pm \beta ; \mathrm{C}_{3} \mathrm{H}_{5}: \mathrm{E}=\alpha \pm \sqrt{ } 2 \beta, \alpha ; \\
& \mathrm{C}_{4} \mathrm{H}_{6}: \alpha \pm 1.6 \beta, \alpha \pm 0.6 \beta ; \mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}: \mathrm{E}=\alpha \pm 2 \beta, \ldots
\end{aligned}
$$

General scheme for 'linear' polyenes

$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}: \mathrm{n}$ atoms, $\mathrm{n} \pi$ orbitals, j energy levels with $\mathrm{j}=1,2,3, \ldots, \mathrm{n}$ $\mathrm{E}_{\mathrm{j}}=\alpha+2 \beta \cos (j \pi) /(\mathrm{n}+1)$

Examples:
ethene, $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{n}=2$:

$$
\begin{aligned}
& E_{1}=\alpha+2 \beta \cos \pi / 3=\alpha+\beta \\
& E_{2}=\alpha+2 \beta \cos (2 \pi) / 3=\alpha-\beta \\
& \text { allyl, } C_{3} H_{5}, n=3 \text { : }
\end{aligned}
$$

$$
E_{1}=\alpha+2 \beta \cos \pi / 4=\alpha+\sqrt{ } 2 \beta \quad \ldots
$$

EFFECT of PERIODIC POTENTIAL - BLOCH WAVEFUNCTIONS

$$
\begin{gathered}
\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r}) \\
V(\mathbf{r}+\mathbf{R})=V(\mathbf{r})
\end{gathered}
$$

Bloch's Theorem: The wavefunction of an electron in a periodic potential can be written as a plane wave times a function with the periodicity of the Bravais lattice.

$$
\psi_{\mathbf{k}}(\mathbf{r})=u_{\mathbf{k}}(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}}
$$

with: $u_{k}(\mathbf{r})=u_{\mathbf{k}}(\mathbf{r}+\mathbf{R})$

Elementary Band Theory for Extended Solids

Energy bands in solids arise from overlapping
atomic orbitals => crystal orbitals (that make up the bands)
Recipe: use LCAO (tight binding) approach
Crystal $=$ regular periodic array $=>$ translational symmetry
Periodic boundary condition requires: $\psi(x+N a)=\psi(x)$.
l.e. each wavefunction must be symmetry equivalent to the one in the neighboring cells.

For a 1D solid with lattice constant a and $n=$ atom index:

Bloch's theorem

$$
\psi_{k}=\sum_{n} e^{i k n a} \phi_{n} \quad \text { (a solution of the Schrödinger equation) }
$$

$$
\psi_{\mathrm{k}}=\sum_{\mathrm{n}}\left\{(\operatorname{coskna}+\text { isinkna }) \phi_{\mathrm{n}}\right\}
$$

1-dimensional case

$$
\psi_{k}=\sum_{n} e^{i n k a} \phi_{n}
$$

$-\pi / \mathbf{a} \leq \mathbf{k} \leq \pi / \mathbf{a}$
range of unique k

Consider $\mathbf{k}=\mathbf{0}$: zone center Γ

$$
\begin{aligned}
& \cos (\mathrm{kna})=\cos (0)=1 \\
& \sin (\mathrm{kna})=\sin (0)=0 e^{i 0 n a}=1 \\
& \psi=\Sigma \phi_{\mathrm{n}}=\phi_{0}+\phi_{1}+\phi_{2}+\phi_{3}+\ldots
\end{aligned}
$$

Consider k = π / \mathbf{a} : \quad zone border \mathbf{X}

$$
\begin{gathered}
\cos (\mathrm{kna})=\cos (\pi \mathrm{n})=(-1)^{\mathrm{n}} \\
\sin (\mathrm{kna})=\sin (\pi \mathrm{n})=0 \\
\psi=\Sigma(-1)^{\mathrm{n}} \phi_{\mathrm{n}}=\phi_{0}-\phi_{1}+\phi_{2}-\phi_{3}+\ldots \\
e^{i \pi n}=(-1)^{n}{ }^{576}
\end{gathered}
$$

Elementary Band Theory for Extended Solids

Example: linear infinite chain of equidistant H atoms

Zone center Γ

$$
\begin{gathered}
\psi=\Sigma \phi_{\mathrm{n}}=\phi_{0}+\phi_{1}+\phi_{2}+\phi_{3}+\ldots \\
-\sigma-\infty- \\
\text { all in phase; } \\
\text { all bonding }(\sigma)
\end{gathered}
$$

Zone border X

$$
\psi=\Sigma(-1)^{n} \phi_{n}=\phi_{0}-\phi_{1}+\phi_{2}-\phi_{3}+\ldots
$$

all out of phase; all antibonding (σ^{*})
large number of MOs form band of states

Plot E as a function of k :

$-\pi / \mathrm{a} \leq \mathrm{k} \leq \pi / \mathrm{a} ;$
$E(k)=E(-k)$
$E(k)=\alpha+2 \beta \cos (k a)$

Other case: s, p and d orbitals in an infinite chain.
Let z be in the chain direction. Then, p_{x} will be analog to p_{y}, and $d_{x y}$ to $d_{x^{2}-y^{2}}$, and $d_{x z}$ to $d_{y z}$.

Zone center Γ

$$
\psi=\Sigma \phi_{\mathrm{n}}=\phi_{0}+\phi_{1}+\phi_{2}+\phi_{3}+\ldots
$$

all in phase; but ? bonding ?

Zone border X

$$
\psi=\Sigma(-1)^{n} \phi_{n}=\phi_{0}-\phi_{1}+\phi_{2}-\phi_{3}+\ldots
$$

all out of phase; but ? bonding ?

Bonding/antibonding: depends on in phase/out of phase AND orientation
s, p and d orbitals in an infinite chain: how do the bands run?
antibonding at $\mathrm{k}=0$: band runs "downhill"

WIDTH OF THE BANDS

Bandwidth (dispersion)

The difference between highest and lowest level of one band.

The bandwidth is determined by the overlap between the interacting orbitals.

The smaller the distance between the atoms, the larger the bandwidth.

Note: as always, the bonding orbitals are less stabilized than the antibonding orbitals are destabilized

Infinite chain of H atoms
a consequence of overlap: e.g., for a dimer, $\quad E_{+/-}=\frac{\alpha \pm \beta}{1 \pm \mathrm{S}}$

CALCULATION OF 1-D BAND STRUCTURE

N atoms $\quad \psi_{k}=\sum_{n=0}^{N} e^{i n k a} \phi_{n}$
Crystal Schrodinger Equation: $H \psi(k)=E(k) \psi(k)$
Electronic energies: $E(k)=\frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle}$
Dirac bra-ket notation:
$<\psi|\hat{H}| \psi>\equiv \int \psi^{*} \hat{H} \psi d \tau$
for normalized atomic orbitals and ignoring overlap integrals:

$$
\begin{aligned}
& <\phi_{m} \mid \phi_{n}>=1 \text { if } m=n \\
& <\phi_{m} \mid \phi_{n}>=0 \text { if } m \neq n
\end{aligned}
$$

$$
<\psi\left|\psi>=\sum_{m, n} e^{i(n-m) k a}<\phi_{m}\right| \phi_{n}>=N
$$

$$
<\psi|\hat{H}| \psi>
$$

$$
\psi_{k}=\sum_{n} e^{i n k a} \phi_{n}
$$

1. for on-site $(\mathrm{m}=\mathrm{n}):<\psi(k)|\hat{H}| \psi(k)>=\sum_{n}<\phi_{n}|\hat{H}| \phi_{n}>=N \alpha$
2. for resonance ($m \neq n$), consider only the nearest neighbors (2)

$$
\begin{aligned}
& <e^{-i n k a} \phi_{n}|\hat{H}| e^{i(n \pm 1) k a} \phi_{n \pm 1}>=\beta e^{ \pm i k a} \\
E(k) & =\frac{<\psi(k)|\hat{H}| \psi(k)>}{<\psi(k) \mid \psi(k)>}=\frac{N \alpha+N \beta\left(e^{i k a}+e^{-i k a}\right)}{N} \\
& =\alpha+2 \beta \cos k a
\end{aligned}
$$

$$
\begin{aligned}
E(k) & =<e^{-i k n a} \phi_{n}|\hat{H}|\left\{e^{i k(n-1) a} \phi_{n-1}+e^{i k n a} \phi_{n}+e^{i k(n+1) a} \phi_{n+1}\right\}> \\
& =\alpha+2 \beta \cos k a
\end{aligned}
$$

Bandwidth in 1D is 4β (this result ignores overlap (S integrals))
in Z dimensions: $W=4 Z \beta$

SLOPE OF THE BANDS - DENSITY OF STATES

Densities of states (DOS)
\equiv number of levels in the energy interval $\Delta \mathrm{E}$

DOS is proportional to the inverse slope of the band; steep bands (large overlap) $\Rightarrow>$ small DOS flat bands (small overlap) $=>$ large DOS DOS $\left(\mathrm{E}_{\mathrm{F}}\right)$ determines properties
e.g., electrical conductivity, magnetic susceptibility, specific heat ...

$$
\begin{aligned}
& \operatorname{DOS}\left(E_{F}\right)=0 \text { : always nonmetallic } \\
& \operatorname{DOS}\left(\mathrm{E}_{\mathrm{F}}\right)>0 \text { : often metallic }
\end{aligned}
$$

Example: Krogman's salt

Unit cell of $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$

the DOS counts levels - the integral of the DOS up to E_{F} is the total number of occupied MOs

SLOPE OF THE BANDS - CARRIER VELOCITY

the mean velocity of an electron described by energy E and wave vector \mathbf{k} is

$$
\mathbf{v}(\mathbf{k})=\left(\frac{1}{\hbar}\right) \frac{\partial E}{\partial \mathbf{k}}
$$

- General result. Electrons move forever with constant velocity (in ideal crystals).
- Zero velocity for electrons in isolated atomic levels (zero bandwidth)
- less overlap \rightarrow lower tunneling probability \rightarrow lower velocity

CURVATURE OF THE BANDS - CARRIER MASS

the effective mass of a charge carrier near a band minimum or maximum is inversely proportional to the curvature of the band:

$$
\frac{1}{m^{*}}=\left(\frac{1}{\hbar^{2}}\right) \frac{\partial^{2} E}{\partial \mathbf{k}^{2}}
$$

negative
effective mass! \rightarrow hole!

positive effective mass

Parabolic approximation near minimum/maximum:

$$
E(k)=E_{0}+\frac{\hbar^{2} k^{2}}{2 m^{*}}
$$

$$
\Rightarrow \frac{\partial^{2} E}{\partial k^{2}}=\frac{\hbar^{2}}{m^{*}}
$$

Elementary Band Theory for Extended Solids

Recipe for the construction of simple band structures

1) determine the valence-orbitals and the number of valence-electrons;
2) determine the relative energies of the valence-orbitals [using MO theory if necessary];
3) see how they depend on k [e.g., do the bands run uphill or downhill; are they steep or flat];
4) sketch the band structure (Fermi level!);
5) plot the projection onto the DOS.

Example: Krogman's salt

$$
\begin{array}{ll}
\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}: \quad \text { white insulator, } \sigma=10^{-7} \Omega^{-1} \mathrm{~cm}^{-1} \\
\mathrm{~K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Cl}_{0.3} \cdot 3 \mathrm{H}_{2} \mathrm{O}: \text { bronze metal, } \quad \sigma=10^{+2} \Omega^{-1} \mathrm{~cm}^{-1}
\end{array}
$$

Comparison of specific conductivities Semiconductors Si : $\sigma=10^{-6} \Omega^{-1} \mathrm{~cm}^{-1}$

Ge: $\sigma=10^{-2} \Omega^{-1} \mathrm{~cm}^{-1}$;
Metals $\quad \mathrm{Cu}: \sigma=10^{+6} \Omega^{-1} \mathrm{~cm}^{-1}$.

Krogman's salt: a quasi one-dimensional material

Step 1: valence-orbitals, electron-counting
$\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{K}^{+}, \mathrm{CN}^{-}$
$=>\mathrm{Pt}^{+2}, \mathrm{~d}^{8}$
Step 2: relative energies of the valence-orbitals (here: \mathbf{d} orbitals) understanding of the crystal structure required!

Unit cell of $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$

Chain of square planar $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ units

Krogman's salt: a quasi one-dimensional material

 Step 2: continuedMO diagram of square planar $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}\left(\mathrm{D}_{4 \mathrm{~h}}\right.$ symmetry $)$

Krogman's salt: a quasi one-dimensional material

The complete MO of PtL_{4}

Krogman's salt: a quasi one-dimensional material

Step 2: continued
Relative height of p_{z} vs. $d_{x^{2}-y^{2}}$?

Formation of PtL_{4} pairs

Step 3: determine how the bands run
? Bandwidths?

Krogman's salt: a quasi one-dimensional material

Step 3: continued
? Uphill or downhill?
Zone center vs. zone border,

Step 4: sketch the band structure

Krogman's salt: a quasi one-dimensional material Step 5: sketch the DOS

Large bandgap $(>3 \mathrm{eV})=>$ white insulator

Krogman's salt: a quasi one-dimensional material

 $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$ vs. $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Cl}_{0.3}$: what are the differences?$$
\mathrm{E}[\mathrm{eV}]
$$

Assuming the same band structure (the same crystal structure):

Fermi level will be lower ($\mathrm{d}^{7.7}$ instead of d^{8})

Partly filled d^{2} band => itinerant electrons along the c^{*} direction => metallic conductivity along c^{*}

> BUT is the crystal structure the same?

Krogman's salt: a quasi one-dimensional material $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$ vs. $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Cl}_{0.3}$: what are the differences?

Structure of $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$

Structure of $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Cl}_{0.3}$

Krogman's salt: a quasi one-dimensional material

 $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$ vs. $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Cl}_{0.3}$: what are the differences?Chains of square planar $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{\mathrm{x}}$ units: "eclipsed" vs. staggered

Krogman's salt: a quasi one-dimensional material

1) What are the consequences of the cell doubling?

$-\cdots:-$
-2

2 basis orbitals:

$$
\psi_{2}(k)=\sum_{n} e^{i n k \cdot 2 a}\left(\phi_{2 n}-\phi_{2 n+1}\right)
$$

$$
\begin{aligned}
& E_{1}(k)(2-\text { atom }- \text { basis })= \\
& e^{-i k n \cdot 2 a} \cdot e^{i k(n-1) \cdot 2 a}<\left(\phi_{2 n}+\phi_{2 n+1}\right)|\hat{H}|\left(\phi_{2 n-2}+\phi_{2 n-1}\right)> \\
& +e^{-i k n \cdot 2 a} \cdot e^{i k n \cdot 2 a}<\left(\phi_{2 n}+\phi_{2 n+1}\right)|\hat{H}|\left(\phi_{2 n}+\phi_{2 n+1}\right)> \\
& +e^{-i k n \cdot 2 a} \cdot e^{i k(n+1) \cdot 2 a}<\left(\phi_{2 n}+\phi_{2 n+1}\right)|\hat{H}|\left(\phi_{2 n+2}+\phi_{2 n+3}\right)> \\
& =e^{-i k \cdot 2 a} \beta+2 \alpha+2 \beta+e^{i k \cdot 2 a} \beta \\
& =2 \alpha+2 \beta+2 \beta \cos 2 k a
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& E_{2}(k)(2-\text { atom }- \text { basis })= \\
& e^{-i k n \cdot 2 a} \cdot e^{i k(n-1) \cdot 2 a}<\left(\phi_{2 n}-\phi_{2 n+1}\right)|\hat{H}|\left(\phi_{2 n-2}-\phi_{2 n-1}\right)> \\
& +e^{-i k n \cdot 2 a} \cdot e^{i k n \cdot 2 a}<\left(\phi_{2 n}-\phi_{2 n+1}\right)|\hat{H}|\left(\phi_{2 n}-\phi_{2 n+1}\right)> \\
& +e^{-i k n \cdot 2 a} \cdot e^{i k(n+1) \cdot 2 a}<\left(\phi_{2 n}-\phi_{2 n+1}\right)|\hat{H}|\left(\phi_{2 n+2}-\phi_{2 n+3}\right)> \\
& =-e^{-i k \cdot 2 a} \beta+2 \alpha-2 \beta-e^{i k \cdot 2 a} \beta \\
& =2 \alpha-2 \beta-2 \beta \cos 2 k a
\end{aligned}
$$

2) $\varnothing-\sigma-2 \alpha-4 \beta$

E2

Krogman's salt: a quasi one-dimensional material

1) What are the consequences of the cell doubling?
=> apply the folding mechanism

Krogman's salt: a quasi one-dimensional material

2) What are the consequences of the staggering?

Krogman's salt: a quasi one-dimensional material

2) What are the consequences of the staggering?

Krogman's salt: a quasi one-dimensional material

Comparison of the densities of states

Calculations in agreement with the observations:

$$
\begin{aligned}
& \mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}: \quad \text { white insulator, } \sigma=10^{-7} \Omega^{-1} \mathrm{~cm}^{-1} \\
& \mathrm{~K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Cl}_{0.3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \text { : bronze metal, } \quad \sigma=10^{+2} \Omega^{-1} \mathrm{~cm}^{-1}
\end{aligned}
$$

PEIERLS (pay-earls) DISTORTION

"1D equally spaced chains with one electron per ion are unstable"
such a system can lower its energy by distorting so as to remove an electronic degeneracy.

Peierls Distortion

This is the solid state analogue of the Jahn-Teller effect.

- symmetry breaking lifts a degeneracy

JAHN-TELLER EFFECT

a non-linear molecule with unequally-occupied degenerate orbitals will undergo a symmetry-lowering deformation that breaks the degeneracy, stabilizing the system.
e.g. tetragonal distortion lowers the energy of a d^{9} complex

PEIERLS DISTORTION OF H ATOM CHAIN

symmetric pairing distortion opens a band gap at the Fermi level.

distortion stabilizes the system

- effect is largest for $\frac{1}{2}$ filled band
- band gap forms
- H_{2} molecules more stable than H chain

Ions develop static periodic distortion
\rightarrow charge density waves

Valence Band (HOMO σ)

Conduction Band (LUMO σ^{*})

Intra Inter
$\left.\begin{array}{cc}\sigma & \sigma^{*} \\ \sigma & \text { non } \\ \sigma & \sigma\end{array}\right\} \begin{gathered} \\ \begin{array}{c}\text { Band runs } \\ \text { uphill }\end{array}\end{gathered}$

Intra Inter

POLYACETYLENE

another 1D Peierls distortion \rightarrow localization of pi electrons

Reduction with alkali metal (n-doping):

$$
[\mathrm{CH}]_{n}+x \mathrm{Na}-->[\mathrm{CH}]_{n}^{x-}+x \mathrm{Na}^{+}
$$

Oxidation with halogen (p-doping):

$$
[\mathrm{CH}]_{n}+3 x / 2 \mathrm{l}_{2}-->[\mathrm{CH}]_{n}{ }^{x+}+x \mathrm{l}_{3}^{-}
$$

Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa Nobel Prize in Chemistry 2000, organic semiconductors

2D and 3D Peierls distortions also occur, sometimes forming band gaps

2D BAND STRUCTURE

a two-dimensional square net [s orbitals only (or $\mathbf{p}_{\mathbf{z}}$)]
Simple Hückel

$$
\psi(k)=\sum e^{i k_{x} m a+i k_{y} n a} \cdot \phi_{m, n}
$$

$\mathrm{X}=(\pi / \mathrm{a}, 0,0)$
$\mathrm{Y}=(0, \pi / \mathrm{a}, 0)$
$\mathrm{Z}=(0,0, \pi / \mathrm{a})$
zone center Γ
all a.o. in phase

Brillouin zone

Elementary Band Theory for Extended Solids

More dimensions: a two-dimensional square net [s orbitals only (or $\boldsymbol{p}_{\mathbf{z}}$)]

Γ

Crystal orbitals at special k points

X

M

X

612

How to calculate $\mathrm{E}(\mathrm{k})$?

$$
\psi(k)=\sum_{m, n} e^{i k_{x} m a+i k_{y} n a} \cdot \phi_{m, n}
$$

Crystal Schrodinger Equation:

$$
H \psi(k)=E(k) \psi(k)
$$

$$
E(k)=\frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

$$
E(k)=\alpha+2 \beta\left(\cos k_{x} a+\cos k_{y} a\right)
$$

$W=4 Z \beta$

$E(k)=\alpha+2 \beta\left(\cos k_{x} a+\cos k_{y} a\right)$

Elementary Band Theory for Extended Solids

More dimensions: a two-dimensional square net [s and porbitals] Crystal orbitals at special k points

M

schematic band structure

For rectangular lattice with increased lattice constant in the y-direction, β_{b} is smaller than before:

$$
\begin{aligned}
& \text { - X, Y not equivalent k-points } \\
& \begin{array}{l}
\text { less overlap in } y \text {-direction } \\
\text { than for square lattice }
\end{array} \\
& \hline
\end{aligned}
$$

For rectangular lattice with very large lattice constant in y-direction, β_{b} is almost zero:

$$
E(k)=\alpha+2 \beta_{a} \cos k_{x} a+2 \beta_{b} \cos k_{y} b
$$

- X, Y not equivalent k-points
- no overlap in y-direction, so identical to 1D band structure!

3D BAND STRUCTURE

Brillouin Zone of Diamond and Zincblende Structure (FCC Lattice)

The first Brillouin zone

High symmetry points and directions

$$
\begin{array}{ll}
\Gamma=2 \pi / a_{0}[0,0,0] & \\
\mathrm{X}=2 \pi / \mathrm{a}_{0}[1,0,0] & \\
\mathrm{L}=2 \pi / \mathrm{a}_{0}[1 / 2,1 / 2,1 / 2] & \\
\mathrm{U}=2 \pi / \mathrm{a}_{0}[1,1 / 4,1 / 4] & \\
\mathrm{W}=2 \pi / \mathrm{a}_{0}[1,1 / 2,0] & \\
\mathrm{K}=2 \pi / \mathrm{a}_{0}[3 / 4,3 / 4,0] & \\
\Delta=2 \pi / \mathrm{a}_{0}[\zeta, 0,0], & 0 \leq \zeta \leq 1 \\
\Lambda=2 \pi / \mathrm{a}_{0}[\zeta, \xi, \zeta], & 0 \leq \zeta \leq 1 / 2 \\
\Sigma=2 \pi / \mathrm{a}_{0}[\xi, \xi, 0], & 0 \leq \zeta \leq 3 / 4 \\
\mathrm{Z}=2 \pi / \mathrm{a}_{0}[1, \zeta, 0], & 0 \leq \zeta \leq 1 / 2 \\
\mathrm{Q}=2 \pi / \mathrm{a}_{0}[1-\zeta, 1 / 2, \zeta], & 0 \leq \zeta \leq 1 / 2 \\
\mathrm{~S}=2 \pi / \mathrm{a}_{0}[1, \zeta, \zeta], & 0 \leq \zeta \leq 1 / 4
\end{array}
$$

Electronic Band Structure of Si

